CDS&E: Inferring Lattice Dynamics from Temporal X-ray Diffraction Data

CDS

基本信息

  • 批准号:
    2202124
  • 负责人:
  • 金额:
    $ 37.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

NONTECHNICAL SUMMARYEmerging X-ray scattering experimental techniques provide the capability to probe correlations between atomic structure and physical properties of materials with atomic-scale (around one-billionth of a meter) sensitivity and with one trillionth of a second time resolution. The images obtained in these scattering experiments contain visual features, such as rings, spots, and halos, which encode detailed information about the atomic structure and its time evolution. However, the corresponding data sets are enormously large, and therefore, manually analyzing them with many uncertainties cannot be solely performed by human experts. This award supports research and educational activities to develop artificial intelligence techniques to mine data from X-ray scattering experiments to detect atomic-scale mechanisms of phase transformations and plastic deformation in materials when they are subjected to extreme conditions like high pressure, temperature or strain. Achieving a fundamental understanding of the mechanisms that govern the arrangement and motion of atoms is crucial for identifying new pathways of forming new matter with desired properties and behavior at extreme conditions. This project will also provide multidisciplinary training for undergraduate and graduate students in computational materials science, advanced atomic-level structural/chemical characterization, molecular dynamics simulations, and artificial intelligence techniques. The project will inform the design of new course material and modules on artificial intelligence applied to materials science. The PIs will also be involved in outreach to K-12 students aimed at broadening participation of underrepresented groups in science, technology, engineering, and mathematics and raise awareness of nanotechnology and materials science.TECHNICAL SUMMARYThis award supports research and educational activities aimed at developing automated deep-learning computer vision techniques to mine x-ray diffraction (XRD) data to identify crystal structures and detect lattice-level mechanisms responsible for phase transformation and plastic deformation under extreme conditions. At very high pressures, temperatures, or strain rates when lattice variations or occurrence of new phases are not known a priori, analyzing vast datasets of snapshots from billions of XRD measurements become inaccurate, or fail completely. To overcome this challenge, the research team will leverage a series of novel and advanced techniques, including multimodal fusion, reconstruction, space-time modeling, weak supervision, domain adaptation, and visualization to achieve the following objectives: 1) Generation of static and temporal synthetic one-dimensional XRD patterns and two-dimensional XRD images, 2) Development of deep learning models for static and temporal classification of crystal structures, 3) Development of interpretation techniques for explanation and justification of deep learning models and predictions, and 4) Domain adaptation to large experimental data. The successful development of such deep learning techniques will lead to deeper understanding of unknown phenomena in materials under extreme conditions when no prior knowledge is available.This project will also provide multidisciplinary training for undergraduate and graduate students in computational materials science, advanced atomic-level structural/chemical characterization, molecular dynamics simulations, and deep learning techniques. The project will inform the design of new course material and modules on applied deep learning for materials science. The PIs will also be involved in outreach to K-12 students aimed at broadening participation of underrepresented groups in science, technology, engineering, and mathematics and raise awareness of nanotechnology and materials science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术性总结新兴的X射线散射实验技术提供了探测原子结构和材料物理性质之间相关性的能力,具有原子尺度(约十亿分之一米)的灵敏度和万亿分之一秒的时间分辨率。在这些散射实验中获得的图像包含视觉特征,如环,斑点和晕,它们编码了有关原子结构及其时间演化的详细信息。然而,相应的数据集非常大,因此,手动分析它们具有许多不确定性,不能仅由人类专家执行。该奖项支持研究和教育活动,以开发人工智能技术,从X射线散射实验中挖掘数据,以检测材料在高压,温度或应变等极端条件下的相变和塑性变形的原子级机制。实现对原子排列和运动机制的基本理解对于确定在极端条件下形成具有所需性质和行为的新物质的新途径至关重要。该项目还将为本科生和研究生提供计算材料科学,高级原子级结构/化学表征,分子动力学模拟和人工智能技术的多学科培训。该项目将为新课程材料和人工智能应用于材料科学模块的设计提供信息。PI还将参与K-12学生的外联活动,旨在扩大代表性不足的群体在科学,技术,工程,该奖项支持旨在开发自动化深度学习计算机视觉技术的研究和教育活动,以挖掘X射线衍射(XRD)数据,从而识别晶体结构并检测晶格。在极端条件下负责相变和塑性变形的水平机制。在非常高的压力、温度或应变速率下,当晶格变化或新相的出现事先未知时,分析来自数十亿XRD测量的大量快照数据集变得不准确,或完全失败。为了克服这一挑战,研究团队将利用一系列新颖和先进的技术,包括多模态融合,重建,时空建模,弱监督,域适应和可视化,以实现以下目标:1)生成静态和时间合成一维XRD图案和二维XRD图像,2)开发用于晶体结构静态和时间分类的深度学习模型,3)开发用于解释和证明深度学习模型和预测的解释技术,以及4)对大型实验数据的领域适应。该深度学习技术的成功开发将有助于在没有先验知识的情况下更深入地了解极端条件下材料中的未知现象,该项目还将为本科生和研究生提供计算材料科学,高级原子级结构/化学表征,分子动力学模拟和深度学习技术的多学科培训。该项目将为材料科学应用深度学习的新课程材料和模块的设计提供信息。PI还将参与K-12学生的外联活动,旨在扩大科学,技术,工程和数学方面代表性不足的群体的参与,并提高对纳米技术和材料科学的认识。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Niaz Abdolrahim其他文献

Correction: Materials laboratories of the future for alloys, amorphous, and composite materials
  • DOI:
    10.1557/s43577-025-00884-0
  • 发表时间:
    2025-02-28
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Sarbajit Banerjee;Y. Shirley Meng;Andrew M. Minor;Minghao Zhang;Nestor J. Zaluzec;Maria K.Y. Chan;Gerald Seidler;David W. McComb;Joshua Agar;Partha P. Mukherjee;Brent Melot;Karena Chapman;Beth S. Guiton;Robert F. Klie;Ian D. McCue;Paul M. Voyles;Ian Robertson;Ling Li;Miaofang Chi;Joel F. Destino;Arun Devaraj;Emmanuelle A. Marquis;Carlo U. Segre;Huinan H. Liu;Judith C. Yang;Kasra Momeni;Amit Misra;Niaz Abdolrahim;Julia E. Medvedeva;Wenjun Cai;Alp Sehirlioglu;Melike Dizbay-Onat;Apurva Mehta;Lori Graham-Brady;Benji Maruyama;Krishna Rajan;Jamie H. Warner;Mitra L. Taheri;Sergei V. Kalinin;B. Reeja-Jayan;Udo D. Schwarz;Sindee L. Simon;Craig M. Brown
  • 通讯作者:
    Craig M. Brown
Solid-state dewetting of co-sputtered thin Mo-Cu films accompanied by phase separation
共溅射的Mo - Cu薄膜的固态去湿伴随着相分离
  • DOI:
    10.1016/j.actamat.2025.120889
  • 发表时间:
    2025-05-01
  • 期刊:
  • 影响因子:
    9.300
  • 作者:
    Feitao Li;Afnan Mostafa;Jonathan Zimmerman;Zhao Liang;Jeyun Yeom;Jolanta Janczak-Rusch;Niaz Abdolrahim;Eugen Rabkin
  • 通讯作者:
    Eugen Rabkin
Mechanisms of helium nanobubble growth and defect interactions in irradiated copper: A molecular dynamics study
辐照铜中氦纳米气泡生长及缺陷相互作用的机制:分子动力学研究
  • DOI:
    10.1016/j.jnucmat.2022.154199
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Ali K. Shargh;Ognjen Bosić;Niaz Abdolrahim
  • 通讯作者:
    Niaz Abdolrahim
Materials laboratories of the future for alloys, amorphous, and composite materials
  • DOI:
    10.1557/s43577-024-00846-y
  • 发表时间:
    2025-01-29
  • 期刊:
  • 影响因子:
    4.900
  • 作者:
    Sarbajit Banerjee;Y. Shirley Meng;Andrew M. Minor;Minghao Zhang;Nestor J. Zaluzec;Maria K.Y. Chan;Gerald Seidler;David W. McComb;Joshua Agar;Partha P. Mukherjee;Brent Melot;Karena Chapman;Beth S. Guiton;Robert F. Klie;Ian D. McCue;Paul M. Voyles;Ian Robertson;Ling Li;Miaofang Chi;Joel F. Destino;Arun Devaraj;Emmanuelle A. Marquis;Carlo U. Segre;Huinan H. Liu;Judith C. Yang;Kasra Momeni;Amit Misra;Niaz Abdolrahim;Julia E. Medvedeva;Wenjun Cai;Alp Sehirlioglu;Melike Dizbay-Onat;Apurva Mehta;Lori Graham-Brady;Benji Maruyama;Krishna Rajan;Jamie H. Warner;Mitra L. Taheri;Sergei V. Kalinin;B. Reeja-Jayan;Udo D. Schwarz;Sindee L. Simon;Craig M. Brown
  • 通讯作者:
    Craig M. Brown

Niaz Abdolrahim的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Niaz Abdolrahim', 18)}}的其他基金

NSF-BSF: Stress-Assisted Structural Phase Transformations and Plasticity in Bicontinuous Nanomaterials
NSF-BSF:双连续纳米材料中的应力辅助结构相变和塑性
  • 批准号:
    2208681
  • 财政年份:
    2022
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Developing deformation maps for designing nanoporous metals with enhanced ductility and strength
开发变形图以设计具有增强延展性和强度的纳米多孔金属
  • 批准号:
    1609587
  • 财政年份:
    2016
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant

相似海外基金

Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
  • 批准号:
    BB/Y513957/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
CAREER: Tracking correlation or inferring causation: How human language processing adapts to the environment
职业:跟踪相关性或推断因果关系:人类语言处理如何适应环境
  • 批准号:
    2336304
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Continuing Grant
Inferring epithelial tissue mechanics through data-efficient multi-fidelity modelling
通过数据高效的多保真度建模推断上皮组织力学
  • 批准号:
    BB/Y514020/1
  • 财政年份:
    2024
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Research Grant
Snake venom systems as a model for inferring the structure and evolution of regulatory networks underlying organism-level physiological traits
蛇毒系统作为推断生物体水平生理特征调控网络的结构和进化的模型
  • 批准号:
    2307044
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Methodology for inferring directed graphs representing generative processes
推断表示生成过程的有向图的方法
  • 批准号:
    2789004
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Studentship
Inferring the gene coevolution network from deep comparative genomics
从深度比较基因组学推断基因协同进化网络
  • 批准号:
    2241312
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Inferring Kinase Activity from Tumor Phosphoproteomic Data
从肿瘤磷酸化蛋白质组数据推断激酶活性
  • 批准号:
    10743051
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
Methods for inferring and analyzing gene regulatory networks using single-cell multiomics and spatial genomics data
使用单细胞多组学和空间基因组学数据推断和分析基因调控网络的方法
  • 批准号:
    10712174
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
IIBR Informatics: Mixture model algorithms for inferring covariance structures and microbial associations from microbiome data
IIBR 信息学:用于从微生物组数据推断协方差结构和微生物关联的混合模型算法
  • 批准号:
    2400009
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
    Standard Grant
Inferring multi-scale dynamics underlying behavior in aging C. elegans
推断衰老线虫行为背后的多尺度动力学
  • 批准号:
    10638631
  • 财政年份:
    2023
  • 资助金额:
    $ 37.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了