Snake venom systems as a model for inferring the structure and evolution of regulatory networks underlying organism-level physiological traits
蛇毒系统作为推断生物体水平生理特征调控网络的结构和进化的模型
基本信息
- 批准号:2307044
- 负责人:
- 金额:$ 150.14万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-08-01 至 2027-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
How new traits arise, how organism-level phenotypes manifest through variation at the cellular level, and how trait variation is impacted by genomic changes that modify gene regulatory networks are fundamental questions for understanding the genomic basis of organismal phenotype. This collaborative project links these topics through studies of snake venom systems and the genomic, regulatory, physiological, cellular, and evolutionary mechanisms that drive variation in venom composition. The research aims to transform current understanding of gene regulatory mechanisms by integrating inferences across scales of biological organization, from single cells to whole organisms, and from within populations to distantly related species, and by applying new predictive frameworks to link genetic and phenotypic variation. New statistical approaches that leverage both cellular and evolutionary variation to generate, test, and refine hypotheses for how gene regulatory networks function – innovations that are broadly applicable to any eukaryotic system – will be developed and disseminated. The research will advance fundamental understanding of how natural selection acts to evolve, maintain, and finely tune complex traits. Mentoring and research training in integrative biology will be provided for 22 undergraduate and 8 graduate students across four institutions, and a course-based undergraduate research experience (CURE) will be implemented. In addition, the project includes workshops and online modules to enhance training in state-of-the-art genomics and biological data science. By providing new insights into how snake venom variation is regulated, the project will have broad ramifications for improving global treatment of snakebite, with potential to impact millions globally.The overarching goal of this research program is to advance the ability to understand and predict how new gene regulatory networks arise and how variation in these networks shape complex physiological traits, using snake venom as a model system. This research aims to understand how complex physiological traits are controlled, how these regulatory networks arise and subsequently re-wire existing physiological systems, and to identify the mechanisms that shape cellular and evolutionary variation in organismal phenotypes. This project will formulate, refine, and test mechanistic hypotheses for gene regulatory networks underlying venom composition by integrating across biological and evolutionary scales, and by leveraging emerging statistical frameworks to link genomic variation and gene regulatory variation with cellular and evolutionary trait variation. New methods developed will integrate predictive approaches and diverse functional genomic data to test mechanistic hypotheses and predict the roles of regulatory elements, trans-acting factors and other features that govern venom composition, and to test how cellular and evolutionary heterogeneity together shape organismal-level phenotypes. Key products of this work include novel approaches and software that leverage both single-cell variation and evolutionary variation to explicitly test hypotheses for the roles of gene regulatory components (e.g., cis-regulatory elements and trans-regulatory factors) that will be broadly applicable for developing and testing hypotheses for gene regulatory mechanisms in any eukaryotic system. The proposed research includes methodological and theoretical scientific innovation, development of new tools and software for understanding and testing hypotheses of regulatory networks and their evolution, training, establishment of collaborative networks, and impactful outreach.This project is jointly funded by BIO-IOS-Physiological Mechanisms and Biomechanics, BIO-DEB-Evolutionary Processes, and BIO-DEB-Systematics and Biodiversity Science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
新性状是如何产生的,生物体水平的表型是如何通过细胞水平的变异表现出来的,以及性状变异是如何受到基因调控网络的基因组变化的影响的,这些都是理解生物体表型基因组基础的基本问题。该合作项目通过对蛇毒系统和驱动毒液成分变化的基因组、调控、生理、细胞和进化机制的研究,将这些主题联系起来。该研究旨在通过整合从单细胞到整个生物体,从种群内到远亲物种的生物组织尺度的推断,并通过应用新的预测框架将遗传和表型变异联系起来,从而改变目前对基因调控机制的理解。利用细胞和进化变异来产生、测试和完善基因调控网络功能的新统计方法——广泛适用于任何真核系统的创新——将得到发展和传播。这项研究将促进对自然选择如何进化、维持和微调复杂性状的基本理解。将为四所院校的22名本科生和8名研究生提供综合生物学方面的指导和研究培训,并将实施基于课程的本科生研究体验(CURE)。此外,该项目还包括讲习班和在线模块,以加强最先进的基因组学和生物数据科学方面的培训。通过提供有关如何监管蛇毒变异的新见解,该项目将对改善全球蛇咬伤治疗产生广泛影响,可能影响全球数百万人。这项研究计划的首要目标是提高理解和预测新的基因调控网络是如何产生的,以及这些网络的变化是如何塑造复杂的生理特征的能力,使用蛇毒作为模型系统。本研究旨在了解复杂的生理性状是如何被控制的,这些调节网络是如何产生的,并随后重新连接现有的生理系统,并确定在生物体表型中形成细胞和进化变异的机制。该项目将通过整合生物和进化尺度,并利用新兴的统计框架将基因组变异和基因调控变异与细胞和进化性状变异联系起来,制定、完善和测试毒液成分基因调控网络的机制假设。开发的新方法将整合预测方法和多种功能基因组数据,以测试机制假设,预测调节元件,反式作用因子和控制毒液成分的其他特征的作用,并测试细胞和进化异质性如何共同形成生物体水平的表型。这项工作的关键产品包括利用单细胞变异和进化变异的新方法和软件,以明确测试基因调控成分(例如,顺式调控元件和反式调控因子)的作用的假设,这将广泛适用于开发和测试任何真核系统中基因调控机制的假设。拟议的研究包括方法论和理论科学创新,开发新的工具和软件,以理解和测试监管网络及其演变的假设,培训,建立协作网络,以及有效的推广。本项目由bio - ios -生理机制与生物力学、bio - deb -进化过程、bio - deb -系统学与生物多样性联合资助。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Todd Castoe其他文献
Todd Castoe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Todd Castoe', 18)}}的其他基金
Systematics, introgression, and adaptation in Western Rattlesnakes: a model system for studying gene flow, selection, and speciation
西部响尾蛇的系统学、基因渗入和适应:研究基因流、选择和物种形成的模型系统
- 批准号:
1655571 - 财政年份:2017
- 资助金额:
$ 150.14万 - 项目类别:
Standard Grant
Collaborative Research: Integrated mechanisms underlying the regulation of intestinal form and function
合作研究:肠道形态和功能调节的综合机制
- 批准号:
1655735 - 财政年份:2017
- 资助金额:
$ 150.14万 - 项目类别:
Continuing Grant
DISSERTATION RESEARCH: Genomic basis of convergent phenotypic evolution in island populations of boa constrictors
论文研究:岛屿蟒蛇种群趋同表型进化的基因组基础
- 批准号:
1501747 - 财政年份:2015
- 资助金额:
$ 150.14万 - 项目类别:
Standard Grant
DISSERTATION RESEARCH: Delineation of populations, species, and genomic adaptations across a widely distributed venomous snake species complex
论文研究:描述广泛分布的毒蛇物种复合体的种群、物种和基因组适应
- 批准号:
1501886 - 财政年份:2015
- 资助金额:
$ 150.14万 - 项目类别:
Standard Grant
相似海外基金
Investigating the Role of Macrophages in Heart Failure with Preserved Ejection Fraction
研究巨噬细胞在射血分数保留的心力衰竭中的作用
- 批准号:
10629241 - 财政年份:2022
- 资助金额:
$ 150.14万 - 项目类别:
Investigating the Role of Macrophages in Heart Failure with Preserved Ejection Fraction
研究巨噬细胞在射血分数保留的心力衰竭中的作用
- 批准号:
10449478 - 财政年份:2022
- 资助金额:
$ 150.14万 - 项目类别:
Regulation of Host Signaling by Parasitoid Venom Proteins
寄生物毒蛋白对宿主信号传导的调节
- 批准号:
10439636 - 财政年份:2019
- 资助金额:
$ 150.14万 - 项目类别:
Regulation of Host Signaling by Parasitoid Venom Proteins
寄生物毒蛋白对宿主信号传导的调节
- 批准号:
10654581 - 财政年份:2019
- 资助金额:
$ 150.14万 - 项目类别:
Regulation of Host Signaling by Parasitoid Venom Proteins
寄生物毒蛋白对宿主信号传导的调节
- 批准号:
10204047 - 财政年份:2019
- 资助金额:
$ 150.14万 - 项目类别: