SHF: Small: INTEGRATED CIRCUITS BROADBAND MULTISCALE ANALYSIS WITH FAST ALGORITHMS
SHF:小型:利用快速算法进行集成电路宽带多尺度分析
基本信息
- 批准号:1218552
- 负责人:
- 金额:$ 44.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-07-01 至 2016-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to improve and develop electromagnetic (EM) analysis tools to meet the demand of the computer chip industry. The modeling of EM effects in computer integrated circuits (IC) has in recent years become increasingly important, due to the increased transistor density and switching clock rate of CPU?s in a computer. For this reason, EM effect is a challenge identified by the International Technology Roadmap for Semiconductors (ITRS) as an area of priority. But the exorbitant computational cost and complexity of such EM modeling problems have precluded their precise solution so far. Commercial simulation tools for multi-function broadband ICs, which trade accuracy for efficiency, cannot fully meet the stringent demands for broad bandwidth and complexity of next generation applications. However, fast algorithms for EM simulations have potentials when stabilized with appropriate techniques for broadband applications to capture both circuit physics and wave physics. Fast, efficient, and highly stable algorithms will be developed for seeking broadband, multi-scale solutions of IC problems. The solutions will be integrated with existing Electronics Design and Automation (EDA) tools, and co-design will be studied at chip and package levels. The work will be connected to real-world problems and models will be validated with measurements. The potential impact of fast and efficient modeling technique for electronic ICs can alter how computers are designed. It will remove bottlenecks caused by EM effects due to increased transistor density and switching clock rates, and allow the accurate virtual prototyping of circuit design over a broad frequency range. It will also encourage IC designers to use more microwave engineering paradigms in future IC designs. Hence, it will expand the design space of IC and circuit designers, increase their repertoire of toolboxes, and enrich new possibilities for future IC designs. Due to the lack of high-quality computer-aided design (CAD) design tools that incorporate EM effects efficiently and accurately, IC designers face bottlenecks due to signal and power integrity issues in 3D IC designs. By precise and efficient electromagnetic modeling, CAD IC characterization will be improved and the design barriers faced by IC designers will be pushed back. In addition, this project will train students, at various levels ranging from undergraduates to graduates, to be well versed in electromagnetic physics, applied mathematics, computer science, and measurements (with a keen focus on the science of IC simulation and design). Students schooled in this cross-disciplinary field generally adapt easily to adjacent areas of research in academia and industry. Hence, this project will train badly needed human resource in computational science and engineering and adjacent fields for the advancement of high tech. EM physics, valid over a vast length scale, is fundamental to many electrical engineering technologies. Fast, broadband computational electromagnetics (CEM) algorithms for complex structures are applicable to a large variety of other applications including micro- and nano-technologies, ranging from meta-material modeling, to nano-optics and nano-lithography. It can help in the design of super-resolution lithography, and improve the modeling of EM effects in N/MEMS, sensors and actuators, interconnects in computers at the package level, as well as at the board level. It will enable the modeling of small, complex, smart, and reconfigurable antennas, RF integrated circuits, as well as greatly impacting terahertz modeling, biotech, and homeland security technology development.
本项目旨在改进和开发电磁(EM)分析工具,以满足计算机芯片行业的需求。 近年来,由于CPU的晶体管密度和开关时钟频率的增加,计算机集成电路(IC)中的电磁效应建模变得越来越重要。s在电脑里。 因此,EM效应是国际半导体技术路线图(ITRS)确定的优先领域。 但是,过高的计算成本和复杂的电磁建模问题,排除了他们的精确解决方案。商用多功能宽带集成电路仿真工具以效率换取精度,无法完全满足下一代应用对宽带宽和复杂性的严格要求。 然而,EM模拟的快速算法具有潜力时,稳定与宽带应用程序的适当技术,以捕捉电路物理和波物理。 快速,高效,高稳定性的算法将被开发用于寻求宽带,多尺度解决方案的IC问题。 这些解决方案将与现有的电子设计和自动化(EDA)工具集成,并将在芯片和封装层面研究协同设计。 这项工作将与现实世界的问题联系起来,模型将通过测量进行验证。快速有效的电子集成电路建模技术的潜在影响可以改变计算机的设计方式。 它将消除由于增加晶体管密度和开关时钟速率而导致的EM效应造成的瓶颈,并允许在宽频率范围内进行电路设计的准确虚拟原型。 它也将鼓励IC设计人员在未来的IC设计中使用更多的微波工程范例。 因此,它将扩大IC和电路设计人员的设计空间,增加他们的工具箱,并丰富未来IC设计的新可能性。 由于缺乏高质量的计算机辅助设计(CAD)设计工具,有效和准确地纳入EM效应,IC设计人员面临的瓶颈,由于信号和电源完整性问题,在3D IC设计。 通过精确和高效的电磁建模,CAD IC特性将得到改善,IC设计人员面临的设计障碍将被推回。 此外,该项目将培养学生,从本科生到研究生,精通电磁物理,应用数学,计算机科学和测量(专注于IC仿真和设计科学)。 在这个跨学科领域接受教育的学生通常很容易适应学术界和工业界的相邻研究领域。 因此,该项目将为高科技的发展培养急需的计算科学与工程及相关领域的人力资源。 EM物理学在很大的长度范围内有效,是许多电气工程技术的基础。 复杂结构的快速宽带计算电磁学(CEM)算法适用于各种各样的其他应用,包括微米和纳米技术,从超材料建模到纳米光学和纳米光刻。 它可以帮助超分辨率光刻的设计,并改善在N/MEMS,传感器和执行器,计算机互连的封装级,以及在板级的EM效应的建模。 它将使小型,复杂,智能和可重构天线,RF集成电路的建模成为可能,并极大地影响太赫兹建模,生物技术和国土安全技术的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weng Chew其他文献
Weng Chew的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weng Chew', 18)}}的其他基金
CDS&E: Enabling Quantum Technology Design Optimization Using Large-Scale Quantum Information Preserving Computational Electromagnetics Methods
CDS
- 批准号:
2202389 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
- 批准号:
1818910 - 财政年份:2017
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
High Accuracy, Broadband Simulation of Complex Structures with Quantum Effects, Parallel Fast Algorithm, and Integral Equation Domain Decomposition
具有量子效应的复杂结构的高精度、宽带模拟、并行快速算法和积分方程域分解
- 批准号:
1609195 - 财政年份:2016
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
Nonlinear Inverse Scattering Methods for Three Dimensional Objects
三维物体的非线性逆散射方法
- 批准号:
9906651 - 财政年份:1999
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
Nonlinear Inverse Scattering Methods for Large Objects
大物体的非线性逆散射方法
- 批准号:
9302145 - 财政年份:1994
- 资助金额:
$ 44.5万 - 项目类别:
Continuing Grant
Fast Algorithms for Wave Scattering of Large Inhomogeneous Bodies
大型非均匀物体波散射的快速算法
- 批准号:
9224466 - 财政年份:1993
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
Presidential Young Investigator Award: Forward and Inverse Scattering Problems
总统青年研究员奖:前向和逆向散射问题
- 批准号:
8552891 - 财政年份:1986
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
SHF: Small: Testing and Design-for-Test Techniques for Monolithic 3D Integrated Circuits
SHF:小型:单片 3D 集成电路的测试和测试设计技术
- 批准号:
2309822 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
SHF: Small: Explainable Machine Learning for Better Design of Very Large Scale Integrated Circuits
SHF:小:可解释的机器学习,用于更好地设计超大规模集成电路
- 批准号:
2322713 - 财政年份:2023
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
CCF: SHF: Small: Self-Adaptive Interference-Avoiding Wireless Receiver Hardware through Real-Time Learning-Based Automatic Optimization of Power-Efficient Integrated Circuits
CCF:SHF:小型:通过基于实时学习的高能效集成电路自动优化实现自适应干扰避免无线接收器硬件
- 批准号:
2218845 - 财政年份:2022
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
SHF: Small: Enabling On-Device Bayesian Neural Network Training via An Integrated Architecture-System Approach
SHF:小型:通过集成架构系统方法实现设备上贝叶斯神经网络训练
- 批准号:
2130688 - 财政年份:2021
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
SHF: Small: Knowledge Integrated Data-Efficient Deep Learning
SHF:小型:知识集成数据高效深度学习
- 批准号:
2006738 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
SHF: Small: An Integrated Hardware-Software Architecture for Efficient, Low-Power, Spatially Collaborative Computing in Augmented Reality
SHF:小型:增强现实中高效、低功耗、空间协作计算的集成硬件软件架构
- 批准号:
2007159 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
SHF: Small: Next-Generation Fully Integrated Power Management Circuits: Enabling Faster and More Efficient Computing and Communication in Smaller and Lower-Cost Mobile Electronics
SHF:小型:下一代全集成电源管理电路:在更小、更低成本的移动电子产品中实现更快、更高效的计算和通信
- 批准号:
2007154 - 财政年份:2020
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
SHF: Small: Testing and Design-for-Test Techniques for Monolithic 3D Integrated Circuits
SHF:小型:单片 3D 集成电路的测试和测试设计技术
- 批准号:
1908045 - 财政年份:2019
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant
SHF: Small: Collaborative research: Language-Integrated Verification for Determininistic Parallelism
SHF:小型:协作研究:确定性并行性的语言集成验证
- 批准号:
1911213 - 财政年份:2019
- 资助金额:
$ 44.5万 - 项目类别:
Standard Grant














{{item.name}}会员




