Controls on explosive basaltic eruptions within the San Francisco Volcanic Field: Constraints from seismic imaging and multiphase magma ascent modeling

对旧金山火山场内爆炸性玄武岩喷发的控制:地震成像和多相岩浆上升模型的限制

基本信息

  • 批准号:
    2202666
  • 负责人:
  • 金额:
    $ 74.91万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Volcanic eruptions are major hazards that can cause significant socio-economic effects on local populations and short-term changes to the climate that have a global impact. Many eruptions are fed by a single conduit that brings magma to the surface repeatedly over time producing major volcanic edifices associated with volcanic arcs around the world. In contrast, volcanic fields are composed of tens to hundreds of volcanic vents that are distributed over areas of 100 to 100,000 km2. These vents typically only produce a single eruption before becoming inactive and the locations of subsequent eruptions can be unpredictable and at significant distances from the previous events. Furthermore, the eruption styles within these volcanic fields can vary between non-explosive lava flows to violently explosive events that eject volcanic ash and gases tens of kilometers into the atmosphere. The San Francisco Volcanic Field (SFVF) in Northern Arizona exhibits these classic characteristics of a volcanic field and includes one of the best documented examples of an explosive eruption within these settings at Sunset Crater northeast of Flagstaff, AZ. The distribution of volcanic vents in the SFVF and why significant variability exists in the eruption styles of the volcanic field remain poorly understood. This is not only the case for the SFVF, but for every volcanic field on Earth, making it difficult to understand potential hazards these systems represent to local populations. This project seeks to better understand this system by combining seismological and eruption modeling approaches. Hundreds of instruments used for measuring ground motion (seismometers) will be installed throughout the SFVF in order to detect signals from local earthquakes. This seismological component of the project will be complemented by the development of computer models that simulate volcanic eruptions. In addition to exploring the general conditions necessary for producing non-explosive and explosive eruptions in volcanic fields, this component of the project will use the details of magma distribution beneath Sunset Crater derived from the seismological work, to constrain the specific conditions that led to this eruption. This will be the first project of its kind to produce a detailed image of the magmatic system beneath an entire volcanic field and directly use these constraints to improve eruption modeling. The work will improve hazard assessment for local populations (e.g., Flagstaff, AZ), as well as for population centers near other volcanic fields around the world (e.g., Auckland, New Zealand). Students from Chandler-Gilbert Community College in Arizona will participate in the research for this project and will be recruited to come to the University of Arizona following completion of their 2-year degrees. Teaching modules related to volcanic hazards will also be produced from this project and distributed to the broader academic community.The San Francisco Volcanic Field (SFVF) covers an area approximately 5,000 km2 in northern Arizona and includes nearly 600 basaltic vents interspersed with a few, large-volume intermediate to silicic volcanic centers. Over the past ~5-6 Myr, the locus of volcanism at the SFVF has migrated eastward at a rate of 1-3 cm/yr with the 1085 CE eruption that produced Sunset Crater being the youngest in this volcanic field. Though most of the volcanic vents within the SFVF exhibit landforms common to the effusive eruption styles of distributed volcanic fields, the Sunset Crater eruption was violently explosive and significantly affected the indigenous population living in the region at the time. Key to improving our understanding of the hazards of the SFVF is better constraining the conditions that led to the sub-Plinian style eruption at Sunset Crater which did not affect nearby volcanic vents. Existing studies have indicated that a mid-crustal magma storage zone played a key role in the Sunset Crater eruption, however, currently our understanding is limited regarding how the properties of this storage zone (e.g., size, depth, melt fraction, volatile content) influenced the eruption. Details of the crustal magma storage system that have resulted in differing volcanic compositions (mafic vs. felsic) within the SFVF are also unknown. By integrating seismic imaging and eruption modeling, this project lays out a holistic approach to better understand the subsurface magmatic plumbing system and processes that drive volcanic activity within the SFVF. Specific components of this project will include (1) detailed characterization of seismicity and the development of high-resolution 3D seismic velocity models of the crust beneath the SFVF to image current and past magmatic systems associated with this volcanic field, (2) the development of coupled magma chamber pressurization and multiphase magma ascent models to determine the conditions necessary to drive effusive to explosive basaltic eruption styles, and (3) combining constraints from seismic imaging work on the volumes and depths of crustal magma reservoirs with these state-of-the-art eruption models to better understand the subsurface processes that drove the violently explosive Sunset Crater eruption.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
火山爆发是重大的灾害,可对当地人口造成重大的社会经济影响,并使气候发生短期变化,产生全球影响。许多火山喷发都是由一条管道供给的,随着时间的推移,这条管道将岩浆反复带到地表,从而在世界各地产生与火山弧有关的主要火山机构。 相比之下,火山区由数十至数百个火山喷口组成,分布在100至100 000平方公里的地区。这些喷口通常只产生一次喷发,然后变得不活跃,随后喷发的位置可能是不可预测的,并且与以前的事件相距很远。此外,这些火山区的喷发方式可能会在非爆炸性熔岩流和剧烈爆炸事件之间变化,这些事件将火山灰和气体喷射到数十公里外的大气中。 位于亚利桑那州北方的弗朗西斯科火山场(SFVF)展示了火山场的这些经典特征,其中包括亚利桑那州弗拉格斯塔夫东北部日落火山口的爆炸性喷发的最佳记录实例之一。SFVF中火山喷口的分布以及为什么火山场的喷发样式存在显著的变化仍然知之甚少。不仅SFVF如此,地球上的每一个火山区都是如此,因此很难理解这些系统对当地居民造成的潜在危害。 该项目旨在通过结合地震学和火山喷发建模方法更好地了解这一系统。将在整个SFVF安装数百台用于测量地面运动的仪器(地震仪),以检测当地地震的信号。该项目的这一地震学组成部分将得到开发模拟火山爆发的计算机模型的补充。除了探索在火山区产生非爆炸性和爆炸性喷发所需的一般条件外,该项目的这一部分将利用从地震学工作中获得的日落火山口下岩浆分布的细节,以限制导致这次喷发的具体条件。 这将是同类项目中第一个制作整个火山区下方岩浆系统的详细图像,并直接使用这些限制来改进喷发建模。这项工作将改善对当地居民的危险评估(例如,弗拉格斯塔夫,亚利桑那州),以及世界各地其他火山区附近的人口中心(例如,新西兰奥克兰)。 来自亚利桑那州麦克勒-吉尔伯特社区学院的学生将参与该项目的研究,并将在完成两年制学位后被招募到亚利桑那大学。该项目还将制作与火山灾害有关的教学单元,并分发给更广泛的学术界。圣弗朗西斯科火山区(SFVF)位于亚利桑那州北方,面积约为5,000平方公里,包括近600个玄武岩喷口,其中散布着几个大体积的中到中火山中心。 在过去的5-6百万年中,SFVF的火山活动轨迹以1-3厘米/年的速度向东迁移,其中1085年的火山爆发产生了日落火山口,是该火山区最年轻的火山。虽然SFVF内的大多数火山口都表现出与分布式火山场的喷发风格相同的地貌,但日落火山口的喷发是剧烈的爆炸性的,并对当时生活在该地区的土著居民产生了重大影响。提高我们对SFVF危害的理解的关键是更好地限制导致日落火山口亚普林尼式喷发的条件,这些条件不会影响附近的火山口。 现有的研究表明,中地壳岩浆储存区在日落火山口喷发中发挥了关键作用,然而,目前我们对该储存区的性质(例如,大小、深度、熔体分数、挥发分含量)影响喷发。导致SFVF内火山成分(镁铁质与长英质)不同的地壳岩浆储存系统的细节也是未知的。通过整合地震成像和喷发建模,该项目提出了一种整体方法,以更好地了解地下岩浆管道系统和驱动SFVF内火山活动的过程。该项目的具体组成部分将包括(1)详细描述地震活动性,并开发SFVF下方地壳的高分辨率三维地震速度模型,以成像与该火山场相关的当前和过去的岩浆系统,(2)开发耦合的岩浆房加压和多相岩浆上升模型,以确定驱动喷发式玄武岩喷发的必要条件,以及(3)将地震成像工作对地壳岩浆库的体积和深度的限制与这些最先进的喷发模型相结合,以更好地了解驱动强烈爆炸的日落火山口喷发的地下过程。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eric Kiser其他文献

Eric Kiser的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eric Kiser', 18)}}的其他基金

Collaborative Research: Exploring the nature of deep-focus earthquakes in the Japan, Kuril, and Izu-Bonin subduction zones
合作研究:探索日本、千岛群岛和伊豆-小笠原俯冲带深源地震的性质
  • 批准号:
    1802441
  • 财政年份:
    2018
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Continuing Grant

相似海外基金

Constraints on the tempo and magnitude of explosive volcanism: facilitating long-term ash fall hazard assessments
对爆发性火山活动的速度和强度的限制:促进长期火山灰坠落危险评估
  • 批准号:
    MR/Y011767/1
  • 财政年份:
    2024
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Fellowship
Study of explosive transients with UV light
用紫外光研究爆炸瞬变
  • 批准号:
    23H01214
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Collaborative Research: SHINE--Exploring Reconnection-Driven Solar Explosive Events in Different Regimes through Modeling and Observation
合作研究:SHINE——通过建模和观测探索不同状态下重新连接驱动的太阳爆炸事件
  • 批准号:
    2301338
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Continuing Grant
Novel tools for dating explosive volcanic eruptions in the critical window
用于确定关键窗口内火山喷发时间的新工具
  • 批准号:
    DP230103085
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Discovery Projects
Compressive Subsurface Radar Imaging: fast and smart detection of buried explosive threats
压缩式地下雷达成像:快速、智能地检测埋藏的爆炸物威胁
  • 批准号:
    EP/X022951/1
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Fellowship
Explosive Astrophysics from Siding Spring Observatory
赛丁斯普林天文台的爆炸天体物理学
  • 批准号:
    LE230100063
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Linkage Infrastructure, Equipment and Facilities
Psychophysiological Correlates of Cognitive Bias Modification in Intermittent Explosive Disorder
间歇性爆发性障碍认知偏差修正的心理生理相关性
  • 批准号:
    10677927
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
A phylogenomic approach to reveal the explosive adaptive radiation of wood Sonchus in Canaries
用系统发育学方法揭示加那利群岛木桑属植物的爆炸性适应性辐射
  • 批准号:
    22KF0187
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Numerical modeling of conduit flow to reproduce preparation and initiation processes of explosive eruptions
管道流动的数值模拟,以重现爆炸性喷发的准备和引发过程
  • 批准号:
    23K03535
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Illuminating the dark Universe with explosive astrophysical events
用爆炸性天体物理事件照亮黑暗的宇宙
  • 批准号:
    DE230100055
  • 财政年份:
    2023
  • 资助金额:
    $ 74.91万
  • 项目类别:
    Discovery Early Career Researcher Award
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了