Surgery in Contact Geometry

接触几何外科手术

基本信息

  • 批准号:
    2203312
  • 负责人:
  • 金额:
    $ 63.55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This project will focus on several central questions in low dimensional contact topology. Contact topology studies a geometric structure on odd dimensional manifolds, called a contact structure, that over the last twenty to thirty years has been shown to have deep connections with three and four dimensional spaces. The Principal Investigator will continue his work classifying contact structures in dimension three and some special subsets of them called Legendrian knots. In addition he will investigate how properties of these structures interact and relate to a more familiar type of geometry called Riemannian geometry. The PI will also continue his commitment to the education of undergraduate and graduate students and postdoctoral fellows. He will organize conferences and workshops, and be a managing editor for “Algebraic and Geometric Topology”, as well as begin a book project to provide a comprehensive resource for certain key techniques in contact geometry.The Principal Investigator will investigate contact and symplectic structures through a variety of techniques, but focusing on surgery techniques and connections to Riemannian metrics. In dimension three understanding Legendrian and transverse knots in a contact manifold has gone hand in hand with advances in our understanding of contact structures and their subtle links with topology. The Principal Investigator will continue his investigations of such knots in three manifolds, focusing on qualitative features of them as well as classification results in novel situations. He will study how various properties of a contact structure, such as Giroux torsion, fillability, and virtual overtwistedness, behave under surgery. The Principal Investigator will also start a project to classify contact structures on all small Seifert fibered spaces (and some large ones) and study their contact geometric properties. Riemannian metrics have long been known to have deep connections with the smooth topology of manifolds and more recently it has been shown that contact structures do as well. The Principal Investigator will continue to explore relations between these two geometric structures with the goal of seeing key properties of a contact structure (such as tightness) reflected in Riemannian metrics that are adapted to them. This will hopefully lead to a more complete understanding of the general picture of contact structures on 3 manifolds and create new tools for studying higher dimensional contact manifolds.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将集中在低维接触拓扑中的几个核心问题上。接触拓扑学研究奇维流形上的一种几何结构,称为接触结构,在过去的二三十年里,它被证明与三维和四维空间有着深刻的联系。首席调查员将继续他的工作,将接触结构分类为第三维,以及它们的一些特殊子集,称为传奇结。此外,他还将研究这些结构的性质如何与一种更熟悉的几何类型相互作用和联系,这种类型的几何称为黎曼几何。国际和平协会还将继续致力于本科生和研究生以及博士后研究员的教育。他将组织会议和研讨会,并担任《代数和几何拓扑学》的执行主编,并开始一个图书项目,为接触几何中的某些关键技术提供全面的资源。首席研究员将通过各种技术研究接触和辛结构,但重点是外科技术和与黎曼度量的联系。在三维理解中,接触流形中的勒让德结和横向结与我们对接触结构及其与拓扑的微妙联系的理解是齐头并进的。首席调查员将继续对三个流形中的这种结进行调查,重点是它们的质量特征以及在新情况下的分类结果。他将研究接触结构的各种属性,如吉鲁克斯扭转、可填充性和虚拟过载,在手术中如何表现。首席调查员还将启动一个项目,对所有小的Seifert纤维空间(和一些大的)上的接触结构进行分类,并研究它们的接触几何性质。黎曼度量与流形的光滑拓扑有着很深的联系,最近的研究表明,接触结构也是如此。首席调查员将继续探索这两个几何结构之间的关系,目标是看到接触结构的关键属性(如紧密性)反映在适应它们的黎曼度量中。这将有望导致对3个流形上的接触结构的总体情况的更全面的了解,并为研究更高维度的接触流形创造新的工具。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Etnyre其他文献

The arc complex and contact geometry: non-destabilizable planar open book decompositions of the tight contact 3-sphere
圆弧复形和接触几何:紧密接触 3 球面的不可失稳平面开卷分解
Constraints on families of smooth 4 –manifolds from Pin (cid:0) . 2 / –monopole
来自 Pin (cid:0) 的平滑 4 –流形族的约束。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. O. K. Onno;N. O. N. Akamura;John Etnyre;Kathryn Hess;Fred Cohen;J. Elisenda;Grigsby Boston;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne
2 3 O ct 2 00 4 Table of Contents for the Handbook of Knot Theory
2 3 Oct 2 00 4 纽结理论手册目录
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Menasco;M. Thistlethwaite;Colin Adams;Greg Buck;J. Birman;Tara Brendle;John Etnyre
  • 通讯作者:
    John Etnyre
T G Algebraic & Geometric Topology
TG 代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne
A T G Algebraic & Geometric Topology
ATG 代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. O. Y. Ang;John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne

John Etnyre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Etnyre', 18)}}的其他基金

Conference: Tech Topology Summer School 2023
会议:2023 年技术拓扑暑期学校
  • 批准号:
    2316093
  • 财政年份:
    2023
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Standard Grant
Conference: Tech Topology Conference at Georgia Tech
会议:佐治亚理工学院技术拓扑会议
  • 批准号:
    2333152
  • 财政年份:
    2023
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Standard Grant
Submanifolds and Cobordisms in Contact and Symplectic Topology
接触拓扑和辛拓扑中的子流形和配边
  • 批准号:
    1906414
  • 财政年份:
    2019
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Continuing Grant
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
  • 批准号:
    1832173
  • 财政年份:
    2018
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Standard Grant
RTG: Research Training in Geometry and Topology
RTG:几何和拓扑研究培训
  • 批准号:
    1745583
  • 财政年份:
    2018
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Continuing Grant
Submanifolds and Metrics in Contact Geometry
接触几何中的子流形和度量
  • 批准号:
    1608684
  • 财政年份:
    2016
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Standard Grant
Contact Topology in Dimension Three and Higher, July 28 - August 1, 2014
第三维及更高维度的接触拓扑,2014 年 7 月 28 日至 8 月 1 日
  • 批准号:
    1432918
  • 财政年份:
    2014
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Standard Grant
Contact geometry in dimensions high and low
高尺寸和低尺寸的接触几何形状
  • 批准号:
    1309073
  • 财政年份:
    2013
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Continuing Grant
Tech Topology Conference II
技术拓扑会议II
  • 批准号:
    1259098
  • 财政年份:
    2012
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Standard Grant
Contact Geometry, Contact Homology and Open Book Decompositions
接触几何、接触同调和开卷分解
  • 批准号:
    0804820
  • 财政年份:
    2008
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Continuing Grant

相似海外基金

Floer Invariants, Cobordisms, and Contact Geometry
Floer 不变量、配边和接触几何
  • 批准号:
    2238131
  • 财政年份:
    2022
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Standard Grant
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
  • 批准号:
    RGPIN-2018-05771
  • 财政年份:
    2022
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Discovery Grants Program - Individual
Hyperbolic manifolds from a contact geometry perspective
从接触几何角度看双曲流形
  • 批准号:
    2750796
  • 财政年份:
    2022
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Studentship
Comparison of hip contact forces estimated from musculoskeletal models with generic and subject-specific geometry
从肌肉骨骼模型估计的髋部接触力与通用和特定对象几何形状的比较
  • 批准号:
    473882
  • 财政年份:
    2022
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Miscellaneous Programs
Topics in symplectic and contact geometry
辛几何和接触几何主题
  • 批准号:
    2599855
  • 财政年份:
    2021
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Studentship
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
  • 批准号:
    RGPIN-2018-05771
  • 财政年份:
    2021
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Discovery Grants Program - Individual
Floer Invariants, Cobordisms, and Contact Geometry
Floer 不变量、配边和接触几何
  • 批准号:
    2039688
  • 财政年份:
    2020
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Standard Grant
Floer Invariants, Cobordisms, and Contact Geometry
Floer 不变量、配边和接触几何
  • 批准号:
    2010863
  • 财政年份:
    2020
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Standard Grant
Student workshop in symplectic and contact geometry
辛几何和接触几何学生研讨会
  • 批准号:
    2002676
  • 财政年份:
    2020
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Continuing Grant
Group actions, symplectic and contact geometry, and applications
群作用、辛几何和接触几何以及应用
  • 批准号:
    RGPIN-2018-05771
  • 财政年份:
    2020
  • 资助金额:
    $ 63.55万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了