Contact Topology in Dimension Three and Higher, July 28 - August 1, 2014
第三维及更高维度的接触拓扑,2014 年 7 月 28 日至 8 月 1 日
基本信息
- 批准号:1432918
- 负责人:
- 金额:$ 2.49万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-07-01 至 2015-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This grant supports US participants expenses in the workshop "Contact Geometry in Dimension Three and Higher" to be held at University College London, from July 28 to August 1, 2014. This workshop aims to bring together researchers and students from around the world working in contact geometry and related areas in symplectic topology. There are large groups of researchers in both the U.S. and Europe working in contact topology; and to foster further developments in the field it is important that there is good communication between these research groups. This conference will help provide some of that communication. The workshop includes topics such as pseudo-holomorphic curves, h-principles, symplectic dynamics and Stein manifolds, with the specific goal of introducing higher-dimensional techniques to participants who might be more familiar with low dimensions, or vice versa. The program will be a mixture of ordinary research talks with more in-depth mini-courses on topics of recent interest. The mini-courses will be "Orderability and Rabinowitz Floer theory" by Peter Albers (Munster) and Will Merry (ETH Zurich), "Flexibility in higher-dimensional contact geometry" by Patrick Massot (École Polytechnique) and Emmy Murphy (MIT), and "Intersection theory of punctured holomorphic curves and applications" by Richard Siefring (MPI Leipzig) and Chris Wendl (UCL). The exact list of research talks will be determined closer to the time of the workshop to reflect the latest developments in the field. Details can be found on the workshop web page at http://www.homepages.ucl.ac.uk/~ucahcwe/workshop.html
该补助金支持美国参与者在研讨会上的费用“接触几何在三维和更高的”将在伦敦大学学院伦敦,从7月28日至2014年8月1日举行。本次研讨会的目的是汇集来自世界各地的研究人员和学生在接触几何和辛拓扑相关领域的工作。在美国和欧洲都有大量的研究人员从事接触拓扑学的研究;为了促进该领域的进一步发展,这些研究小组之间保持良好的沟通是很重要的。这次会议将有助于提供一些这种沟通。该研讨会的主题包括伪全纯曲线,h-原理,辛动力学和Stein流形,具体目标是向可能更熟悉低维的参与者介绍高维技术,反之亦然。 该计划将是一个普通的研究会谈与最近感兴趣的话题更深入的迷你课程的混合物。微型课程包括Peter阿尔伯斯(Munster)和Will Merry(苏黎世联邦理工学院)的“有序性和Rabinowitz Floer理论”,帕特里克马索(École Polytechnique)和Emmy Murphy(MIT)的“高维接触几何的灵活性”,以及Richard Siefring(MPI Leipzig)和Chris Wendl(UCL)的“穿孔全纯曲线的相交理论和应用”。研究会谈的确切名单将在接近研讨会的时候确定,以反映该领域的最新发展。有关详细信息,请访问研讨会网页:http://www.homepages.ucl.ac.uk/~ucahcwe/workshop.html
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Etnyre其他文献
The arc complex and contact geometry: non-destabilizable planar open book decompositions of the tight contact 3-sphere
圆弧复形和接触几何:紧密接触 3 球面的不可失稳平面开卷分解
- DOI:
10.1093/imrn/rnt254 - 发表时间:
2013-05 - 期刊:
- 影响因子:1
- 作者:
John Etnyre;Youlin Li - 通讯作者:
Youlin Li
Constraints on families of smooth 4 –manifolds from Pin (cid:0) . 2 / –monopole
来自 Pin (cid:0) 的平滑 4 –流形族的约束。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
H. O. K. Onno;N. O. N. Akamura;John Etnyre;Kathryn Hess;Fred Cohen;J. Elisenda;Grigsby Boston;Jérôme Scherer;École Polytech;Féd;de Lausanne - 通讯作者:
de Lausanne
2 3 O ct 2 00 4 Table of Contents for the Handbook of Knot Theory
2 3 Oct 2 00 4 纽结理论手册目录
- DOI:
- 发表时间:
2004 - 期刊:
- 影响因子:0
- 作者:
W. Menasco;M. Thistlethwaite;Colin Adams;Greg Buck;J. Birman;Tara Brendle;John Etnyre - 通讯作者:
John Etnyre
T G Algebraic & Geometric Topology
TG 代数
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne - 通讯作者:
de Lausanne
A T G Algebraic & Geometric Topology
ATG 代数
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
H. O. Y. Ang;John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne - 通讯作者:
de Lausanne
John Etnyre的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Etnyre', 18)}}的其他基金
Conference: Tech Topology Summer School 2023
会议:2023 年技术拓扑暑期学校
- 批准号:
2316093 - 财政年份:2023
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Conference: Tech Topology Conference at Georgia Tech
会议:佐治亚理工学院技术拓扑会议
- 批准号:
2333152 - 财政年份:2023
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Submanifolds and Cobordisms in Contact and Symplectic Topology
接触拓扑和辛拓扑中的子流形和配边
- 批准号:
1906414 - 财政年份:2019
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
- 批准号:
1832173 - 财政年份:2018
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
RTG: Research Training in Geometry and Topology
RTG:几何和拓扑研究培训
- 批准号:
1745583 - 财政年份:2018
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
Submanifolds and Metrics in Contact Geometry
接触几何中的子流形和度量
- 批准号:
1608684 - 财政年份:2016
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Contact geometry in dimensions high and low
高尺寸和低尺寸的接触几何形状
- 批准号:
1309073 - 财政年份:2013
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
Contact Geometry, Contact Homology and Open Book Decompositions
接触几何、接触同调和开卷分解
- 批准号:
0804820 - 财政年份:2008
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
相似海外基金
Conference: 57th Spring Topology and Dynamical Systems Conference
会议:第57届春季拓扑与动力系统会议
- 批准号:
2348830 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
CAREER: Geometry and topology of quantum materials
职业:量子材料的几何和拓扑
- 批准号:
2340394 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
Conference: Midwest Topology Seminar
会议:中西部拓扑研讨会
- 批准号:
2341204 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Topology in many-body quantum systems in and out of equilibrium
处于平衡状态和非平衡状态的多体量子系统中的拓扑
- 批准号:
2300172 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Continuing Grant
Algebraic Structures in String Topology
弦拓扑中的代数结构
- 批准号:
2405405 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
Conference: Combinatorial and Analytical methods in low-dimensional topology
会议:低维拓扑中的组合和分析方法
- 批准号:
2349401 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Stability conditions: their topology and applications
稳定性条件:拓扑和应用
- 批准号:
DP240101084 - 财政年份:2024
- 资助金额:
$ 2.49万 - 项目类别:
Discovery Projects














{{item.name}}会员




