Contact geometry in dimensions high and low

高尺寸和低尺寸的接触几何形状

基本信息

  • 批准号:
    1309073
  • 负责人:
  • 金额:
    $ 28.8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The focus of this proposal is to address several fundamental questions in low and high dimensional contact geometry. In low dimensions, the most basic question asking which three manifolds admit tight contact structures is still open as are questions related to the result of various surgery operations on contact manifolds. As part of this proposal the Principal Investigator will build on past work studying these questions to, among other things, illuminate the nature of tight contact structures on hyperbolic manifolds and Legendrian surgery on tight contact manifolds. In addition, he will extend recent advances in Legendrian knot theory to not only better understand the structure of such knots but also to classify contact structures on some families of three manifolds including some of the much studied and notoriously difficult small Seifert fibered spaces. In higher dimensions even the existence of contact structures is not completely understood. Recent progress in higher dimensional contact geometry makes the time ripe for an intense investigation of these structures. Namely, a few years ago Niederkrueger introduced the notion of a plastikstufe in hopes of finding an analog of the famed three dimensional tight vs. overtwisted dichotomy in all dimensions (other proposed notions, such as bLobs, have even more recently surfaced) and most recently the Principal Investigator has completely answered the existence question for contact structures on five manifolds (as has another team of researchers). Part of the project will involve addressing the existence of contact structures on all odd dimensional manifolds as well as investigating notions of overtwistedness in higher dimensions. The Principal Investigator will also further develop contact homology computations in higher dimensions and study the elegant conormal construction in order to apply contact geometric techniques to the study of knot theory in dimension three and embedding theory more generally. Contact geometry is a venerable subject that arose as a natural language for geometric optics, thermodynamics and classical mechanics. One encounters contact structures everyday when parallel parking a car, skating, or watching the play of light in a glass of water. Contact geometry has long been studied by mathematicians in physicists but in the last decade or so it has blossomed into a remarkably rich and beautiful theory with close ties to the topology of manifolds (that is the structure of space and space-time), string theory in modern physics, Riemannian geometry, and fluid dynamics. The Principal Investigator will illuminate the connection between contact geometry and Riemannian geometry and the topology of manifolds. He will also explore basic and fundamental questions concerning the existence and uniqueness of contact structures and their submanifolds in high dimensions. In addition the Principal Investigator will continue working with a large group of graduate students and organize conferences and seminars to help educate the next generation of researchers and create fertile environments in which new ideas and collaborations can grow.
该提案的重点是解决低维和高维接触几何中的几个基本问​​题。在低维中,最基本的问题(即哪三个流形允许紧密接触结构)仍然悬而未决,以及与接触流形上的各种手术操作的结果相关的问题。作为该提案的一部分,首席研究员将在过去研究这些问题的工作的基础上,除其他外,阐明双曲流形上的紧密接触结构和紧密接触流形上的勒让德手术的性质。此外,他还将扩展勒让德结理论的最新进展,不仅可以更好地理解此类结的结构,还可以对某些三流形族上的接触结构进行分类,包括一些经过深入研究且众所周知困难的小 Seifert 纤维空间。在更高的维度中,甚至接触结构的存在也没有被完全理解。高维接触几何学的最新进展使得对这些结构进行深入研究的时机已经成熟。也就是说,几年前,Niederkrueger 引入了塑料的概念,希望找到所有维度中著名的三维紧密与过度扭曲二分法的类似物(其他提出的概念,例如 bLobs,最近才出现),最近,首席研究员完全回答了五个流形上接触结构的存在问题(另一组研究人员也是如此)。该项目的一部分将涉及解决所有奇数维流形上接触结构的存在以及研究更高维度中过度扭曲的概念。首席研究员还将进一步发展更高维度的接触同调计算,并研究优雅的共正规构造,以便将接触几何技术应用到三维纽结理论和更广泛的嵌入理论的研究中。接触几何是一门古老的学科,作为几何光学、热力学和经典力学的自然语言而出现。人们每天在平行停车、滑冰或观看一杯水中的光的变化时都会遇到接触结构。接触几何长期以来一直被数学家和物理学家研究,但在过去十年左右的时间里,它已经发展成为一种非常丰富和美丽的理论,与流形拓扑(即空间和时空的结构)、现代物理学中的弦理论、黎曼几何和流体动力学密切相关。首席研究员将阐明接触几何和黎曼几何以及流形拓扑之间的联系。他还将探讨有关高维接触结构及其子流形的存在性和唯一性的基本问题。此外,首席研究员将继续与一大批研究生合作,组织会议和研讨会,以帮助教育下一代研究人员,并创造新想法和合作得以发展的肥沃环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Etnyre其他文献

The arc complex and contact geometry: non-destabilizable planar open book decompositions of the tight contact 3-sphere
圆弧复形和接触几何:紧密接触 3 球面的不可失稳平面开卷分解
Constraints on families of smooth 4 –manifolds from Pin (cid:0) . 2 / –monopole
来自 Pin (cid:0) 的平滑 4 –流形族的约束。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. O. K. Onno;N. O. N. Akamura;John Etnyre;Kathryn Hess;Fred Cohen;J. Elisenda;Grigsby Boston;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne
2 3 O ct 2 00 4 Table of Contents for the Handbook of Knot Theory
2 3 Oct 2 00 4 纽结理论手册目录
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    W. Menasco;M. Thistlethwaite;Colin Adams;Greg Buck;J. Birman;Tara Brendle;John Etnyre
  • 通讯作者:
    John Etnyre
T G Algebraic & Geometric Topology
TG 代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne
A T G Algebraic & Geometric Topology
ATG 代数
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. O. Y. Ang;John Etnyre;Kathryn Hess;Steven Boyer;Robert Lipshitz;Jérôme Scherer;École Polytech;Féd;de Lausanne
  • 通讯作者:
    de Lausanne

John Etnyre的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Etnyre', 18)}}的其他基金

Conference: Tech Topology Summer School 2023
会议:2023 年技术拓扑暑期学校
  • 批准号:
    2316093
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
Conference: Tech Topology Conference at Georgia Tech
会议:佐治亚理工学院技术拓扑会议
  • 批准号:
    2333152
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
Surgery in Contact Geometry
接触几何外科手术
  • 批准号:
    2203312
  • 财政年份:
    2022
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Continuing Grant
Submanifolds and Cobordisms in Contact and Symplectic Topology
接触拓扑和辛拓扑中的子流形和配边
  • 批准号:
    1906414
  • 财政年份:
    2019
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Continuing Grant
The Topology and Geometry of Low-dimensional Manifolds
低维流形的拓扑和几何
  • 批准号:
    1832173
  • 财政年份:
    2018
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
RTG: Research Training in Geometry and Topology
RTG:几何和拓扑研究培训
  • 批准号:
    1745583
  • 财政年份:
    2018
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Continuing Grant
Submanifolds and Metrics in Contact Geometry
接触几何中的子流形和度量
  • 批准号:
    1608684
  • 财政年份:
    2016
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
Contact Topology in Dimension Three and Higher, July 28 - August 1, 2014
第三维及更高维度的接触拓扑,2014 年 7 月 28 日至 8 月 1 日
  • 批准号:
    1432918
  • 财政年份:
    2014
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
Tech Topology Conference II
技术拓扑会议II
  • 批准号:
    1259098
  • 财政年份:
    2012
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Standard Grant
Contact Geometry, Contact Homology and Open Book Decompositions
接触几何、接触同调和开卷分解
  • 批准号:
    0804820
  • 财政年份:
    2008
  • 资助金额:
    $ 28.8万
  • 项目类别:
    Continuing Grant

相似国自然基金

2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
  • 批准号:
    11981240404
  • 批准年份:
    2019
  • 资助金额:
    1.5 万元
  • 项目类别:
    国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
  • 批准号:
    20602003
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Joint Estimate Diffusion Imaging (JEDI) for improved Tissue Characterization and Neural Connectivity in Aging and Alzheimer's Disease
联合估计扩散成像 (JEDI) 可改善衰老和阿尔茨海默病的组织表征和神经连接
  • 批准号:
    10662911
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
Spatio-temporal mechanistic modeling of whole-cell tumor metabolism
全细胞肿瘤代谢的时空机制模型
  • 批准号:
    10645919
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
Implantable 3D fluorescence imaging with high-speed, addressable laser scanning in moving mice
通过高速、可寻址激光扫描对移动小鼠进行植入式 3D 荧光成像
  • 批准号:
    10614795
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
The geometry of neural representations reflecting abstraction in humans
反映人类抽象的神经表征的几何形状
  • 批准号:
    10682315
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10884028
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
Learn Systems Biology Equations From Snapshot Single Cell Genomic Data
从快照单细胞基因组数据学习系统生物学方程
  • 批准号:
    10736507
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
4D controllable extracellular matrix properties to guide iPSC-derived intestinal organoid fate and form
4D 可控细胞外基质特性指导 iPSC 衍生的肠道类器官的命运和形成
  • 批准号:
    10644759
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
Pre-clinical validation of 3D-printed nerve conduits for pediatric peripheral nerve repair
3D 打印神经导管用于儿科周围神经修复的临床前验证
  • 批准号:
    10672031
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
Development and In Vivo Validation of a Theoretical Framework and Practical Methods to Improve Safety and Efficacy of Neuromodulation Electrodes
提高神经调节电极安全性和有效性的理论框架和实用方法的开发和体内验证
  • 批准号:
    10572029
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
Mechanisms of Rotator Cuff Injury During Manual Wheelchair Propulsion
手动轮椅推进过程中肩袖损伤的机制
  • 批准号:
    10572578
  • 财政年份:
    2023
  • 资助金额:
    $ 28.8万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了