Quantum Invariants and Geometric Structures
量子不变量和几何结构
基本信息
- 批准号:1812008
- 负责人:
- 金额:$ 15.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Quantum physics has profoundly changed the world in the last 120 years. Its impact on mathematics is also deep. This National Science Foundation funded project aims to relate the geometry of the three-dimensional space to quantum physics. The affirmative resolution of the problems in the project will benefit our understanding of our three-dimensional universe. This project is at the nexus of two areas of mathematics, known as quantum topology and geometric topology. Being one of the few experts in both these areas, the investigator plans to use techniques from one to shed new light on the other. Kashaev's Volume Conjecture, Witten's Asymptotic Expansion Conjecture and their generalizations assert that the asymptotic behavior of certain quantum invariants of a 3-manifold provides topological and geometric information of the manifold. Among various generalizations of Kashaev's and Witten's conjectures, the recent one by Qingtao Chen and the PI on the Turaev-Viro invariants and their relationship with the hyperbolic volume of the 3- manifold attracts massive attention from the experts. In this project, the PI plans to study the asymptotic behavior of the Turaev-Viro invariants by studying the asymptotic behavior of their building blocks, the quantum 6j-symbols, and the geometry that guides the assembling of the building blocks. A key ingredient is the rigidity of hyperbolic cone metrics developed by the PI and a collaborator. In a related project the PI will attempt to solve a conjecture of Andersen, Masbaum and Ueno (AMU) which asserts that the quantum representations detect the Nielson-Thurston classifications of the mapping classes of a surface. Recently, the PI and a collaborator realized that the AMU conjecture is an immediate consequence of a weaker version of the conjecture by Chen and the PI. Their approach could settle the weaker version of the conjecture, and thereby solve the AMU conjecture.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在过去的120年里,量子物理学深刻地改变了世界。它对数学的影响也是深远的。这个由国家科学基金会资助的项目旨在将三维空间的几何学与量子物理联系起来。该项目中问题的肯定解决将有助于我们对我们三维宇宙的理解。这个项目是两个数学领域的结合点,称为量子拓扑学和几何拓扑学。作为这两个领域为数不多的专家之一,这位研究员计划使用其中一个领域的技术来揭示另一个领域的新情况。Kashaev的体积猜想、Witten的渐近展开猜想及其推广表明,三维流形的某些量子不变量的渐近行为提供了流形的拓扑和几何信息。在Kashaev和Witten猜想的各种推广中,最近陈庆涛和Pi关于Turaev-Viro不变量及其与三维流形的双曲体积的关系的猜想引起了专家们的广泛关注。在这个项目中,PI计划通过研究它们的积木的渐近行为、量子6J符号以及指导积木组装的几何来研究Turaev-Viro不变量的渐近行为。一个关键因素是由PI和一位合作者开发的双曲圆锥指标的刚性。在一个相关的项目中,PI将尝试解决Andersen,Masbaum和Ueno(AMU)的一个猜想,该猜想断言量子表示检测曲面映射类的Nielson-瑟斯顿分类。最近,PI和一位合作者意识到AMU猜想是陈和PI猜想的一个较弱版本的直接结果。他们的方法可以解决猜想的较弱版本,从而解决AMU猜想。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tian Yang其他文献
Location of a conservative hyperplane for cutting plane methods in disjoint bilinear programming
不相交双线性规划中割平面方法的保守超平面的位置
- DOI:
10.1007/s11590-018-01382-w - 发表时间:
2019-01 - 期刊:
- 影响因子:1.6
- 作者:
Xi Chen;Ji-hong Zhang;Xiao-song Ding;Tian Yang;Jing-yi Qian - 通讯作者:
Jing-yi Qian
Tsinghua facial expression database - A database of facial expressions in Chinese young and older women and men: Development and validation
清华面部表情数据库 - 中国年轻和老年女性和男性的面部表情数据库:开发和验证
- DOI:
10.1371/journal.pone.0231304 - 发表时间:
2020 - 期刊:
- 影响因子:3.7
- 作者:
Yang Tao;Yang Zeyun;Xu Guangzheng;Gao Duoling;Zhang Ziheng;Wang Hui;Liu Shiyu;Han Linfeng;Zhu Zhixin;Tian Yang;Huang Yuqi;Zhao Lei;Zhong Kui;Shi Bolin;Li Juan;Fu Shimin;Liang Peipeng;Banissy Michael J.;Sun Pei - 通讯作者:
Sun Pei
Editorial: non‐viral hepatocellular carcinoma surveillance—an increasingly severe public health issue
社论:非病毒性肝细胞癌监测——一个日益严重的公共卫生问题
- DOI:
10.1111/apt.17116 - 发表时间:
2022 - 期刊:
- 影响因子:7.6
- 作者:
Liyang Sun;Zhenli Li;Tian Yang - 通讯作者:
Tian Yang
Apply Four Laboratory Characteristics to Classify Critical Patients With COVID-19 After Admission
应用四个实验室特征对入院后的 COVID-19 重症患者进行分类
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Anping Guo;Zejian Kuang;Ying Wang;Dongxue Luo;Xiaoying Zheng;Ben;Tian Yang;Ji;Canhong Wen;Haizhu Tan - 通讯作者:
Haizhu Tan
Transient characters of the unity reflection phenomenon in all-dielectric magnetic metamaterials
全介电磁性超材料统一反射现象的瞬态特性
- DOI:
10.1364/osac.1.000634 - 发表时间:
2018-10 - 期刊:
- 影响因子:0
- 作者:
Tian Yang;Xiaobo Wang;Zhifang Zhou;Ji Zhou - 通讯作者:
Ji Zhou
Tian Yang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tian Yang', 18)}}的其他基金
Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
- 批准号:
2350250 - 财政年份:2024
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
- 批准号:
2203334 - 财政年份:2022
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
Geometric structures on low-dimensional manifolds
低维流形上的几何结构
- 批准号:
1405066 - 财政年份:2014
- 资助金额:
$ 15.4万 - 项目类别:
Standard Grant
相似海外基金
Fusion of enumerative and algebraic geometry and exploration of quasi-geometric invariants
枚举几何与代数几何的融合以及准几何不变量的探索
- 批准号:
23K17298 - 财政年份:2023
- 资助金额:
$ 15.4万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
Affine Invariants in Geometric Analysis
几何分析中的仿射不变量
- 批准号:
327635-2012 - 财政年份:2021
- 资助金额:
$ 15.4万 - 项目类别:
Discovery Grants Program - Individual
Study of the geometric structure of three manifolds by using quantum invariants
利用量子不变量研究三流形的几何结构
- 批准号:
20H01803 - 财政年份:2020
- 资助金额:
$ 15.4万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Affine Invariants in Geometric Analysis
几何分析中的仿射不变量
- 批准号:
327635-2012 - 财政年份:2020
- 资助金额:
$ 15.4万 - 项目类别:
Discovery Grants Program - Individual
Affine Invariants in Geometric Analysis
几何分析中的仿射不变量
- 批准号:
327635-2012 - 财政年份:2019
- 资助金额:
$ 15.4万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Constructing K-Theoretic Invariants for Geometric Objects
职业:构建几何对象的 K 理论不变量
- 批准号:
1846767 - 财政年份:2019
- 资助金额:
$ 15.4万 - 项目类别:
Continuing Grant
Geometric study of some higher-order topological invariants related to corners
一些与角点相关的高阶拓扑不变量的几何研究
- 批准号:
19K14545 - 财政年份:2019
- 资助金额:
$ 15.4万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Affine Invariants in Geometric Analysis
几何分析中的仿射不变量
- 批准号:
327635-2012 - 财政年份:2018
- 资助金额:
$ 15.4万 - 项目类别:
Discovery Grants Program - Individual
Scalar curvature, spectral zeta functions and local geometric invariants for noncommutative spaces
非交换空间的标量曲率、谱 zeta 函数和局部几何不变量
- 批准号:
RGPIN-2014-04087 - 财政年份:2018
- 资助金额:
$ 15.4万 - 项目类别:
Discovery Grants Program - Individual
Affine Invariants in Geometric Analysis
几何分析中的仿射不变量
- 批准号:
327635-2012 - 财政年份:2017
- 资助金额:
$ 15.4万 - 项目类别:
Discovery Grants Program - Individual