Geometric structures on low-dimensional manifolds

低维流形上的几何结构

基本信息

  • 批准号:
    1405066
  • 负责人:
  • 金额:
    $ 14.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

This project aims at studying the geometric structures on surfaces and 3-manifolds, and their applications in studying the topology of 3-manifolds. In this project, the PI proposes to develop two possible approaches to calculate the hyperbolic structure on 3-manifolds, and an approach of quantizing the spaces of certain geometric structures. Part of the intellectual merit of the proposal comes from the fact that it lies at the frontier of its research area, and also provides a link between different beaches of mathematics, and between mathematics and theoretical physics. During the last ten years, most major open problems on 3-manifolds have been solved, including the Geometrization Conjecture and the Virtually Fibered Conjecture. However, 3-manifolds are still far from being classified. Based on those great achievements, the PI plans on making a further progress in understanding the geometry and topology of 3-manifolds. As a broader impact, the PI plans on involving graduate students in his work. Stanford University has a large number of excellent graduate students, a good amount of which are interested in geometry and topology. As such, the PI is planning to teach a series of graduate courses on the topics, and should start collaborations with some of the graduate students in the future. This work also involves collaborations with people from outside the University.Due to Thurston's Geometrization Conjecture and Perelman's proof, the interior of every compact 3-manifold has a canonical decomposition into geometric pieces, most of which have a unique hyperbolic structure. In turns, explicitly calculating the hyperbolic structure becomes necessary to understand the geometry and topology of 3-manifolds. The PI's first approach is to realize Casson's program using angle structures and volume optimization. This amounts to finding an ideal triangulation of the 3-manifold that admits the maximum volume angle structure. A good family of candidates come from Lackenby's taut ideal triangulations; and we propose to examine if some of them admit the maximum volume angle structure. The second approach consists in studying the hyperbolic cone metrics on triangulated 3-manifolds developed recently by the PI and a collaborator. The key object in this approach is the space of combinatorial curvatures of all hyperbolic cone metrics on a given triangulated 3-manifold, the zero vector belonging to which implies the existence of the hyperbolic structure. The quantum invariants and their relationship with classical geometric structures provides another possible approach to understand the geometry and topology of 3-manifolds. At the heart of this relationship is the Teichmuller space and character varieties of surfaces, which in their nature contain all the geometric information of the surfaces and are candidates for quantization. The PI's approach is based on a relationship between the quantum Teichmuller space and the skein algebra of arcs and links developed by the PI and a collaborator. The key observation in this construction is that Penner's Ptolemy relation satisfied by the lambda-lengths of geodesic arcs could be viewed as a skein relation. In turns, the related objects fit into the picture of Bullock--Frohman--Kania-Bartoszynska and Przytycki--Sikora for the skein quantization of the SL(2,C)-character variety. Ultimately, the PI wants to develop a topological quantum field theory associated to the non-compact Lie group PSL(2,R) using the skein quantization.
本计画旨在研究曲面与三维流形的几何结构,以及它们在三维流形拓扑研究中的应用。在这个项目中,PI提出了两种可能的方法来计算三维流形上的双曲结构,以及量化某些几何结构的空间的方法。这个提议的部分智力价值来自于它位于其研究领域的前沿,并且还提供了不同数学海滩之间以及数学和理论物理之间的联系。在过去的十年中,三维流形上的大多数重要的公开问题都得到了解决,包括几何化猜想和虚纤维猜想。然而,三维流形离分类还很远。基于这些伟大的成就,PI计划在理解三维流形的几何和拓扑方面取得进一步的进展。作为一个更广泛的影响,PI计划让研究生参与他的工作。斯坦福大学有一大批优秀的研究生,其中相当一部分对几何和拓扑学感兴趣。因此,PI计划教授一系列关于这些主题的研究生课程,并在未来与一些研究生开始合作。由于Thurston的几何化猜想和Perelman的证明,每一个紧致三维流形的内部都有一个典型的几何分解,其中大多数都有一个独特的双曲结构。反过来,显式计算双曲结构对于理解三维流形的几何和拓扑是必要的。PI的第一种方法是使用角结构和体积优化来实现Casson的程序。这相当于找到一个理想的三角形的3流形,承认最大体积角结构。一个很好的家庭的候选人来自Lackenby的紧张的理想三角形,我们建议检查,如果其中一些承认的最大体积角结构。第二种方法是研究PI和合作者最近开发的三角化3-流形上的双曲锥度量。在这种方法中的关键对象是一个给定的三角形3-流形上的所有双曲锥度量的组合曲率的空间,属于它的零向量意味着双曲结构的存在。量子不变量及其与经典几何结构的关系为理解三维流形的几何和拓扑提供了另一种可能的途径。这种关系的核心是Teichmuller空间和表面的字符变体,它们在本质上包含了表面的所有几何信息,并且是量化的候选者。PI的方法是基于量子Teichmuller空间和由PI和合作者开发的弧和链接的螺旋代数之间的关系。在这个构造中的关键观察是,由测地弧的长度所满足的Penner的托勒密关系可以被看作是一个绞链关系。反过来,相关的对象适合布洛克-弗罗曼-卡尼亚-巴托辛斯卡和普日蒂茨基-西科拉的SL(2,C)-字符簇的绞链量化。最终,PI希望使用skein量子化来发展与非紧李群PSL(2,R)相关的拓扑量子场论。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tian Yang其他文献

Wnt/β-catenin signaling promotes aging-associated hair
Wnt/β-连环蛋白信号传导促进与衰老相关的头发
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fang Deng;Zhihui Zhang;Mingxing Lei;Haoran Xin;Chunyan Hu;Tian Yang;Yizhan Xin;Yuhong Li;Haiying Guo;Xiaohua Lian
  • 通讯作者:
    Xiaohua Lian
Ultrasound‐assisted extraction of tamarind xyloglucan: an effective approach to reduce the viscosity and improve the α ‐amylase inhibition of xyloglucan
超声辅助提取罗望子木葡聚糖:降低木葡聚糖粘度、提高木葡聚糖α-淀粉酶抑制作用的有效途径
  • DOI:
    10.1002/jsfa.12366
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Xiujuan Jiang;Tian Yang;Yingting Li;Shuyang Liu;Yuanyuan Liu;Daiwen Chen;Wen Qin;Qing Zhang;Derong Lin;Yuntao Liu;Zhengfeng Fang;Hong Chen
  • 通讯作者:
    Hong Chen
Increased expression of a novel miRNA in peripheral blood is negatively correlated with hippocampal volume in patients with major depressive disorder
重度抑郁症患者外周血中一种新型 miRNA 表达的增加与海马体积呈负相关
  • DOI:
    10.1016/j.jad.2018.10.363
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Zhao Liansheng;Yang Xiao;Cui Lijun;Wei Jinxue;Ni Peiyan;Li Mingli;Wang Yingcheng;He Yin;Li Xiaojing;Liang Sugai;Tian Yang;Wang Qiang;Cui Wei;Lin Dongtao;Ma Xiaohong;Li Tao
  • 通讯作者:
    Li Tao
Circulating Levels of L1-cell Adhesion Molecule as a Serum Biomarker for Early Detection of Gastric Cancer and Esophagogastric Junction Adenocarcinoma
L1 细胞粘附分子的循环水平作为早期检测胃癌和食管胃结合部腺癌的血清生物标志物
  • DOI:
    10.7150/jca.41100
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ling-Yu Chu;Yu-Hui Peng;Tian Yang;Wang-Kai Fang;Chao-Qun Hong;Li-Sheng Huang;Liang Xu;En-Min Li;Yi-Wei Xu;Jian-Jun Xie
  • 通讯作者:
    Jian-Jun Xie
Maresin conjugates in tissue regeneration 1 prevents lipopolysaccharide-induced cardiac dysfunction through improvement of mitochondrial biogenesis and function
组织再生中的 Maresin 缀合物 1 通过改善线粒体生物合成和功能来预防脂多糖诱导的心脏功能障碍
  • DOI:
    10.1016/j.bcp.2020.114005
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    5.8
  • 作者:
    Yang Yi;Zhu Yinmeng;Xiao Ji;Tian Yang;Ma Minqi;Li Xinyu;Li Linchao;Zhang Puhong;Li Ming;Wang Jianguang;Jin Shengwei
  • 通讯作者:
    Jin Shengwei

Tian Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tian Yang', 18)}}的其他基金

Conference: Quantum Topology, Quantum Information and connections to Mathematical Physics
会议:量子拓扑、量子信息以及与数学物理的联系
  • 批准号:
    2350250
  • 财政年份:
    2024
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Standard Grant
Hyperbolic Geometry and Quantum Invariants
双曲几何和量子不变量
  • 批准号:
    2203334
  • 财政年份:
    2022
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Standard Grant
Quantum Invariants and Geometric Structures
量子不变量和几何结构
  • 批准号:
    1812008
  • 财政年份:
    2018
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Standard Grant

相似国自然基金

飞行器板壳结构红外热波无损检测基础理论和关键技术的研究
  • 批准号:
    60672101
  • 批准年份:
    2006
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目
新型嘧啶并三环化合物的合成研究
  • 批准号:
    20572032
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
磁层重联区相干结构动力学过程的观测研究
  • 批准号:
    40574067
  • 批准年份:
    2005
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目

相似海外基金

Topological Quantum Field Theory and Geometric Structures in Low Dimensional Topology
低维拓扑中的拓扑量子场论和几何结构
  • 批准号:
    2304033
  • 财政年份:
    2023
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Standard Grant
Geometric structures in low dimensions
低维几何结构
  • 批准号:
    RGPIN-2017-05403
  • 财政年份:
    2022
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric structures in low dimensions
低维几何结构
  • 批准号:
    RGPIN-2017-05403
  • 财政年份:
    2021
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric structures in low dimensions
低维几何结构
  • 批准号:
    RGPIN-2017-05403
  • 财政年份:
    2020
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric structures in low dimensions
低维几何结构
  • 批准号:
    RGPIN-2017-05403
  • 财政年份:
    2019
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Discovery Grants Program - Individual
Geometric structures in low dimensions
低维几何结构
  • 批准号:
    RGPIN-2017-05403
  • 财政年份:
    2018
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Discovery Grants Program - Individual
Higher dimensional representations of fundamental groups of low-dimentional manifolds and geometric structures
低维流形和几何结构的基本群的高维表示
  • 批准号:
    18K03266
  • 财政年份:
    2018
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric structures in low dimensions
低维几何结构
  • 批准号:
    RGPIN-2017-05403
  • 财政年份:
    2017
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Discovery Grants Program - Individual
Relations between invariants of low-dimensional manifolds and their geometric structures
低维流形不变量与其几何结构的关系
  • 批准号:
    24540076
  • 财政年份:
    2012
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topology of low dimensional manifolds with various geometric structures
具有各种几何结构的低维流形拓扑
  • 批准号:
    20540072
  • 财政年份:
    2008
  • 资助金额:
    $ 14.07万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了