DMREF: Physics-Informed Meta-Learning for Design of Complex Materials
DMREF:用于复杂材料设计的物理信息元学习
基本信息
- 批准号:2203580
- 负责人:
- 金额:$ 163.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-15 至 2026-02-28
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A wide class of high-performance materials, including solid-solid composites, porous solids, foams, biological materials, and additively manufactured materials, have complex microstructures, which play a dominant role in determining their properties and performance. This multidisciplinary project will harness recent innovations in artificial intelligence (AI) to establish a novel design and discovery cycle for complex materials that will dramatically accelerate material innovations. This project will create new methodologies through which human materials scientists and AI will collaborate to discover optimal microstructural designs of such complex materials for targeted properties and performance. There are enormous opportunities and needs for innovating next-generation materials through performance-driven design and optimization of microstructures. The AI-driven design framework in this Designing Materials to Revolutionize and Engineer our Future (DMREF) project will pioneer these opportunities through fundamental breakthroughs in AI for the design and machine learning of complex physical processes and will have a high impact on the materials research community. The success of this project will lead to an AI-driven material microstructure design framework, resulting in significant speedup in the discovery process of complex materials, as well as reducing the cost and labor required for material innovation by saving unnecessary “cut-and-try” experiments. The AI-driven design framework will be easily scalable and applicable to a broad range of complex materials, which will benefit the design and manufacturing of functional materials, polymers, composites, biomaterials, etc. By providing an accelerated discovery cycle and reduced costs, the design framework will benefit the US industry and, thereby, contribute to the safety, national security, and technological advancement of society. As such, this project will significantly accelerate and advance the discovery and development of materials with desirable properties and functionality, which aligns with the vision of the DMREF program. This project will benefit from collaboration with the Air Force Research Laboratory (AFRL) with respect to the manufacturing process of energetic materials and the testing and validation of design outputs of the AI framework against experimental results. Student training and workforce development will be enhanced through opportunities provided through AFRL.As the archetype of a complex material with strong microstructural influence on performance, this project will focus on energetic materials (EM), which cover the wide swathe of propellants, pyrotechnics, and explosives—key components in a variety of propulsion and munition systems critical to the US Military, as well as to civilian applications (construction, transportation, mining, etc.). This project will build new methods and tools to close the loop for AI-driven design of EMs, guiding the overall process of characterization, design/optimization, fabrication, experimentation, and validation through advanced machine cognition and game-theoretical decision making. To accomplish this goal, the investigators will first construct the space of a wide range of CHNO EMs and assemble machine learning datasets. The investigators will then develop a novel physics-informed meta-learning (PIML) framework for complex materials such as EMs, which will then be validated with experimental data and real uses cases. While achieving these, this project will make fundamental, use-inspired breakthroughs in AI-related to topics such as small data learning, weakly-supervised learning, and explainable AI, serving both the materials and AI communities. This project will benefit from collaboration with the Air Force Research Laboratory (AFRL) with respect to the manufacturing process of energetic materials and the testing and validation of design outputs of the AI framework against experimental results. Student training and workforce development will be enhanced through opportunities provided through AFRL.This project is jointly funded by NSF’s the Mathematical and Physical Sciences (MPS) Division of Materials Research (DMR) Designing Materials to Revolutionize and Engineer our Future (DMREF) program, the Established Program to Stimulate Competitive Research (EPSCoR), the Engineering (ENG) division of Civil, Mechanical, and Manufacturing Innovation (CMMI), and the Computer and Information Science and Engineering (CISE) division of Information and Intelligent Systems (IIS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
包括固-固复合材料、多孔固体、泡沫、生物材料和增材制造材料在内的各种高性能材料具有复杂的微观结构,这些微观结构在决定其性质和性能方面起着主导作用。这个多学科项目将利用人工智能(AI)的最新创新,为复杂材料建立一个新的设计和发现周期,这将大大加速材料创新。该项目将创建新的方法,通过这些方法,人类材料科学家和人工智能将合作发现这种复杂材料的最佳微观结构设计,以实现目标性能和性能。通过性能驱动的设计和微结构优化,创新下一代材料有着巨大的机会和需求。这个设计材料以革命和工程我们的未来(DMREF)项目中的人工智能驱动的设计框架将通过人工智能在复杂物理过程的设计和机器学习方面的根本突破来开拓这些机会,并将对材料研究界产生重大影响。该项目的成功将导致人工智能驱动的材料微结构设计框架,从而大大加快复杂材料的发现过程,并通过节省不必要的“切割和尝试”实验来降低材料创新所需的成本和劳动力。人工智能驱动的设计框架将易于扩展,适用于广泛的复杂材料,这将有利于功能材料,聚合物,复合材料,生物材料等的设计和制造,通过提供加速的发现周期和降低的成本,设计框架将有利于美国工业,从而有助于安全,国家安全和社会的技术进步。因此,该项目将大大加快和推进具有理想性能和功能的材料的发现和开发,这与DMREF计划的愿景相一致。该项目将受益于与空军研究实验室(AFRL)在高能材料制造过程以及根据实验结果测试和验证人工智能框架设计输出方面的合作。通过AFRL提供的机会,学生培训和劳动力发展将得到加强。作为对性能具有强烈微观结构影响的复杂材料的原型,该项目将重点关注高能材料(EM),其中包括广泛的推进剂,烟火和爆炸物-对美国军方至关重要的各种推进和弹药系统的关键部件,以及民用应用(建筑、运输、采矿等)。该项目将构建新的方法和工具,以闭合EM的AI驱动设计的循环,通过先进的机器认知和博弈论决策来指导表征,设计/优化,制造,实验和验证的整个过程。为了实现这一目标,研究人员将首先构建各种CHNO EM的空间,并组装机器学习数据集。然后,研究人员将为EM等复杂材料开发一种新的物理信息元学习(PIML)框架,然后将使用实验数据和真实的用例进行验证。在实现这些目标的同时,该项目将在与小数据学习、弱监督学习和可解释人工智能等主题相关的人工智能领域取得根本性的、受使用启发的突破,为材料和人工智能社区提供服务。该项目将受益于与空军研究实验室(AFRL)在高能材料制造过程以及根据实验结果测试和验证人工智能框架设计输出方面的合作。通过AFRL提供的机会,学生培训和劳动力发展将得到加强。该项目由NSF的数学和物理科学(MPS)材料研究部(DMR)设计材料以革命和工程我们的未来(DMREF)计划,刺激竞争力研究的既定计划(EPSCoR),土木,机械,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Challenges and Opportunities for Machine Learning in Multiscale Computational Modeling
多尺度计算建模中机器学习的挑战和机遇
- DOI:10.1115/1.4062495
- 发表时间:2023
- 期刊:
- 影响因子:3.1
- 作者:Nguyen, Phong C.;Choi, Joseph B.;Udaykumar, H. S.;Baek, Stephen
- 通讯作者:Baek, Stephen
Artificial intelligence approaches for energetic materials by design: state of the art, challenges, and future directions
- DOI:10.1002/prep.202200276
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Joseph B. Choi;Phong C. H. Nguyen;O. Sen;H. Udaykumar;Stephen Seung-Yeob Baek
- 通讯作者:Joseph B. Choi;Phong C. H. Nguyen;O. Sen;H. Udaykumar;Stephen Seung-Yeob Baek
A Physics‐Aware Deep Learning Model for Energy Localization in Multiscale Shock‐To‐Detonation Simulations of Heterogeneous Energetic Materials
用于多尺度冲击中能量定位的物理感知深度学习模型 - 异种含能材料的爆炸模拟
- DOI:10.1002/prep.202200268
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Nguyen, Phong C. H.;Nguyen, Yen‐Thi;Seshadri, Pradeep K.;Choi, Joseph B.;Udaykumar, H. S.;Baek, Stephen
- 通讯作者:Baek, Stephen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Baek其他文献
Constrained Synthesis with Projected Diffusion Models
使用投影扩散模型的约束合成
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jacob Christopher;Stephen Baek;Ferdinando Fioretto - 通讯作者:
Ferdinando Fioretto
Systems Analysis of Bias and Risk in AI-Enabled Medical Diagnosis
人工智能医疗诊断中的偏差和风险的系统分析
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Negin Moghadasi;M. Piran;Stephen Baek;Rupa S. Valdez;Michael D. Porter;DeAndre A. Johnson;James H. Lambert - 通讯作者:
James H. Lambert
Towards fair decentralized benchmarking of healthcare AI algorithms with the Federated Tumor Segmentation (FeTS) challenge
通过联邦肿瘤分割(FeTS)挑战实现医疗保健 AI 算法的公平去中心化基准测试
- DOI:
10.1038/s41467-025-60466-1 - 发表时间:
2025-07-08 - 期刊:
- 影响因子:15.700
- 作者:
Maximilian Zenk;Ujjwal Baid;Sarthak Pati;Akis Linardos;Brandon Edwards;Micah Sheller;Patrick Foley;Alejandro Aristizabal;David Zimmerer;Alexey Gruzdev;Jason Martin;Russell T. Shinohara;Annika Reinke;Fabian Isensee;Santhosh Parampottupadam;Kaushal Parekh;Ralf Floca;Hasan Kassem;Bhakti Baheti;Siddhesh Thakur;Verena Chung;Kaisar Kushibar;Karim Lekadir;Meirui Jiang;Youtan Yin;Hongzheng Yang;Quande Liu;Cheng Chen;Qi Dou;Pheng-Ann Heng;Xiaofan Zhang;Shaoting Zhang;Muhammad Irfan Khan;Mohammad Ayyaz Azeem;Mojtaba Jafaritadi;Esa Alhoniemi;Elina Kontio;Suleiman A. Khan;Leon Mächler;Ivan Ezhov;Florian Kofler;Suprosanna Shit;Johannes C. Paetzold;Timo Loehr;Benedikt Wiestler;Himashi Peiris;Kamlesh Pawar;Shenjun Zhong;Zhaolin Chen;Munawar Hayat;Gary Egan;Mehrtash Harandi;Ece Isik Polat;Gorkem Polat;Altan Kocyigit;Alptekin Temizel;Anup Tuladhar;Lakshay Tyagi;Raissa Souza;Nils D. Forkert;Pauline Mouches;Matthias Wilms;Vishruth Shambhat;Akansh Maurya;Shubham Subhas Danannavar;Rohit Kalla;Vikas Kumar Anand;Ganapathy Krishnamurthi;Sahil Nalawade;Chandan Ganesh;Ben Wagner;Divya Reddy;Yudhajit Das;Fang F. Yu;Baowei Fei;Ananth J. Madhuranthakam;Joseph Maldjian;Gaurav Singh;Jianxun Ren;Wei Zhang;Ning An;Qingyu Hu;Youjia Zhang;Ying Zhou;Vasilis Siomos;Giacomo Tarroni;Jonathan Passerrat-Palmbach;Ambrish Rawat;Giulio Zizzo;Swanand Ravindra Kadhe;Jonathan P. Epperlein;Stefano Braghin;Yuan Wang;Renuga Kanagavelu;Qingsong Wei;Yechao Yang;Yong Liu;Krzysztof Kotowski;Szymon Adamski;Bartosz Machura;Wojciech Malara;Lukasz Zarudzki;Jakub Nalepa;Yaying Shi;Hongjian Gao;Salman Avestimehr;Yonghong Yan;Agus S. Akbar;Ekaterina Kondrateva;Hua Yang;Zhaopei Li;Hung-Yu Wu;Johannes Roth;Camillo Saueressig;Alexandre Milesi;Quoc D. Nguyen;Nathan J. Gruenhagen;Tsung-Ming Huang;Jun Ma;Har Shwinder H. Singh;Nai-Yu Pan;Dingwen Zhang;Ramy A. Zeineldin;Michal Futrega;Yading Yuan;Gian Marco Conte;Xue Feng;Quan D. Pham;Yong Xia;Zhifan Jiang;Huan Minh Luu;Mariia Dobko;Alexandre Carré;Bair Tuchinov;Hassan Mohy-ud-Din;Saruar Alam;Anup Singh;Nameeta Shah;Weichung Wang;Chiharu Sako;Michel Bilello;Satyam Ghodasara;Suyash Mohan;Christos Davatzikos;Evan Calabrese;Jeffrey Rudie;Javier Villanueva-Meyer;Soonmee Cha;Christopher Hess;John Mongan;Madhura Ingalhalikar;Manali Jadhav;Umang Pandey;Jitender Saini;Raymond Y. Huang;Ken Chang;Minh-Son To;Sargam Bhardwaj;Chee Chong;Marc Agzarian;Michal Kozubek;Filip Lux;Jan Michálek;Petr Matula;Miloš Ker^kovský;Tereza Kopr^ivová;Marek Dostál;Václav Vybíhal;Marco C. Pinho;James Holcomb;Marie Metz;Rajan Jain;Matthew D. Lee;Yvonne W. Lui;Pallavi Tiwari;Ruchika Verma;Rohan Bareja;Ipsa Yadav;Jonathan Chen;Neeraj Kumar;Yuriy Gusev;Krithika Bhuvaneshwar;Anousheh Sayah;Camelia Bencheqroun;Anas Belouali;Subha Madhavan;Rivka R. Colen;Aikaterini Kotrotsou;Philipp Vollmuth;Gianluca Brugnara;Chandrakanth J. Preetha;Felix Sahm;Martin Bendszus;Wolfgang Wick;Abhishek Mahajan;Carmen Balaña;Jaume Capellades;Josep Puig;Yoon Seong Choi;Seung-Koo Lee;Jong Hee Chang;Sung Soo Ahn;Hassan F. Shaykh;Alejandro Herrera-Trujillo;Maria Trujillo;William Escobar;Ana Abello;Jose Bernal;Jhon Gómez;Pamela LaMontagne;Daniel S. Marcus;Mikhail Milchenko;Arash Nazeri;Bennett Landman;Karthik Ramadass;Kaiwen Xu;Silky Chotai;Lola B. Chambless;Akshitkumar Mistry;Reid C. Thompson;Ashok Srinivasan;J. Rajiv Bapuraj;Arvind Rao;Nicholas Wang;Ota Yoshiaki;Toshio Moritani;Sevcan Turk;Joonsang Lee;Snehal Prabhudesai;John Garrett;Matthew Larson;Robert Jeraj;Hongwei Li;Tobias Weiss;Michael Weller;Andrea Bink;Bertrand Pouymayou;Sonam Sharma;Tzu-Chi Tseng;Saba Adabi;Alexandre Xavier Falcão;Samuel B. Martins;Bernardo C. A. Teixeira;Flávia Sprenger;David Menotti;Diego R. Lucio;Simone P. Niclou;Olivier Keunen;Ann-Christin Hau;Enrique Pelaez;Heydy Franco-Maldonado;Francis Loayza;Sebastian Quevedo;Richard McKinley;Johannes Slotboom;Piotr Radojewski;Raphael Meier;Roland Wiest;Johannes Trenkler;Josef Pichler;Georg Necker;Andreas Haunschmidt;Stephan Meckel;Pamela Guevara;Esteban Torche;Cristobal Mendoza;Franco Vera;Elvis Ríos;Eduardo López;Sergio A. Velastin;Joseph Choi;Stephen Baek;Yusung Kim;Heba Ismael;Bryan Allen;John M. Buatti;Peter Zampakis;Vasileios Panagiotopoulos;Panagiotis Tsiganos;Sotiris Alexiou;Ilias Haliassos;Evangelia I. Zacharaki;Konstantinos Moustakas;Christina Kalogeropoulou;Dimitrios M. Kardamakis;Bing Luo;Laila M. Poisson;Ning Wen;Martin Vallières;Mahdi Ait Lhaj Loutfi;David Fortin;Martin Lepage;Fanny Morón;Jacob Mandel;Gaurav Shukla;Spencer Liem;Gregory S. Alexandre;Joseph Lombardo;Joshua D. Palmer;Adam E. Flanders;Adam P. Dicker;Godwin Ogbole;Dotun Oyekunle;Olubunmi Odafe-Oyibotha;Babatunde Osobu;Mustapha Shu’aibu Hikima;Mayowa Soneye;Farouk Dako;Adeleye Dorcas;Derrick Murcia;Eric Fu;Rourke Haas;John A. Thompson;David Ryan Ormond;Stuart Currie;Kavi Fatania;Russell Frood;Amber L. Simpson;Jacob J. Peoples;Ricky Hu;Danielle Cutler;Fabio Y. Moraes;Anh Tran;Mohammad Hamghalam;Michael A. Boss;James Gimpel;Deepak Kattil Veettil;Kendall Schmidt;Lisa Cimino;Cynthia Price;Brian Bialecki;Sailaja Marella;Charles Apgar;Andras Jakab;Marc-André Weber;Errol Colak;Jens Kleesiek;John B. Freymann;Justin S. Kirby;Lena Maier-Hein;Jake Albrecht;Peter Mattson;Alexandros Karargyris;Prashant Shah;Bjoern Menze;Klaus Maier-Hein;Spyridon Bakas - 通讯作者:
Spyridon Bakas
Stephen Baek的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen Baek', 18)}}的其他基金
DMREF: Physics-Informed Meta-Learning for Design of Complex Materials
DMREF:用于复杂材料设计的物理信息元学习
- 批准号:
2118393 - 财政年份:2021
- 资助金额:
$ 163.94万 - 项目类别:
Continuing Grant
相似国自然基金
Understanding complicated gravitational physics by simple two-shell systems
- 批准号:12005059
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Chinese Physics B
- 批准号:11224806
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Science China-Physics, Mechanics & Astronomy
- 批准号:11224804
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Frontiers of Physics 出版资助
- 批准号:11224805
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese physics B
- 批准号:11024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
Discovering early biomarkers of Alzheimer's disease using genetic and physics-informed networks
利用遗传和物理信息网络发现阿尔茨海默病的早期生物标志物
- 批准号:
2904538 - 财政年份:2024
- 资助金额:
$ 163.94万 - 项目类别:
Studentship
PIDD-MSK: Physics-Informed Data-Driven Musculoskeletal Modelling
PIDD-MSK:物理信息数据驱动的肌肉骨骼建模
- 批准号:
EP/Y027930/1 - 财政年份:2024
- 资助金额:
$ 163.94万 - 项目类别:
Fellowship
RII Track-4:NSF: Physics-Informed Machine Learning with Organ-on-a-Chip Data for an In-Depth Understanding of Disease Progression and Drug Delivery Dynamics
RII Track-4:NSF:利用器官芯片数据进行物理信息机器学习,深入了解疾病进展和药物输送动力学
- 批准号:
2327473 - 财政年份:2024
- 资助金额:
$ 163.94万 - 项目类别:
Standard Grant
CAREER: Physics-Informed Deep Learning for Understanding Earthquake Slip Complexity
职业:基于物理的深度学习用于理解地震滑动的复杂性
- 批准号:
2339996 - 财政年份:2024
- 资助金额:
$ 163.94万 - 项目类别:
Continuing Grant
CAREER: Stochastic Optimization and Physics-informed Machine Learning for Scalable and Intelligent Adaptive Protection of Power Systems
职业:随机优化和基于物理的机器学习,用于电力系统的可扩展和智能自适应保护
- 批准号:
2338555 - 财政年份:2024
- 资助金额:
$ 163.94万 - 项目类别:
Continuing Grant
A New Tsunami Model Using Physics-Informed Neural Networks (PINNs) for Real-Time Tsunami Simulation
使用物理信息神经网络 (PINN) 进行实时海啸模拟的新海啸模型
- 批准号:
24K08013 - 财政年份:2024
- 资助金额:
$ 163.94万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
CAREER: Physics-informed Graph Learning for Anomaly Detection in Power Systems
职业:用于电力系统异常检测的物理信息图学习
- 批准号:
2338642 - 财政年份:2024
- 资助金额:
$ 163.94万 - 项目类别:
Continuing Grant
CAREER: Design of Cellular Mechanical Metamaterials under Uncertainty with Physics-Informed and Data-Driven Machine Learning
职业:利用物理信息和数据驱动的机器学习在不确定性下设计细胞机械超材料
- 批准号:
2236947 - 财政年份:2023
- 资助金额:
$ 163.94万 - 项目类别:
Standard Grant
CPS Medium: Collaborative Research: Physics-Informed Learning and Control of Passive and Hybrid Conditioning Systems in Buildings
CPS 媒介:协作研究:建筑物中被动和混合空调系统的物理信息学习和控制
- 批准号:
2241796 - 财政年份:2023
- 资助金额:
$ 163.94万 - 项目类别:
Standard Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
- 批准号:
2245017 - 财政年份:2023
- 资助金额:
$ 163.94万 - 项目类别:
Standard Grant