RUI: Chemically Modified Enzymes to Control Adsorption on Gold Nanoparticles for Enhanced Structure/Function

RUI:化学修饰酶控制金纳米粒子上的吸附以增强结构/功能

基本信息

项目摘要

With support from the Macromolecular, Supramolecular and Nanochemistry Program in the Division of Chemistry, Professor Jeremy Driskell of Illinois State University is combining chemical synthesis and advanced chemical analysis tools to study how proteins adsorb onto gold nanoparticles and maintain or enhance their biological function. The study identifies key interactions between the protein and nanoparticle that can be exploited to prevent protein unfolding and to facilitate controlled release from the nanoparticle surface. Professor Driskell and his students are chemically modifying proteins to install chemical anchors with high affinity for the gold nanoparticles and measuring the stability and biological function of the adsorbed protein layer. Their discoveries could lead to predictive design parameters to form robust and highly functional protein-nanoparticle probes and broadly impact modern biosensing, medical imaging, drug delivery, and biocatalysis. This project provides support for undergraduate students to participate in an immersive research experience to learn advanced analytical techniques and gain an appreciation for a multidisciplinary approach to problem solving. Additionally, in collaboration with the Illinois Research Academy, Dr. Driskell and his supported undergraduate students provide high school students with an intense, yet supervised, research experience. A detailed understanding of the protein-nanoparticle interface is critical to mitigate structural changes that negatively impact the function of the adsorbed protein and to leverage stabilizing interactions that enhance protein function. Surface accessible thiols on a protein are hypothesized to be primarily responsible for the adsorption onto gold nanoparticles and the formation of a hard corona; thus, the ability to precisely control the number of protein thiols can be exploited to optimize bioconjugate function. A synthetic strategy is proposed to install thiol functional groups on a series of enzymes. The reaction conditions are optimized to precisely control the number of thiols, and monitored by high-resolution mass spectrometry, zeta potential, and Ellman’s reagent. Adsorption affinity, quantitatively assessed using nanoparticle tracking analysis, and protein exchange rate, measured via a competitive protein binding, is correlated with the number of surface accessible thiols presented by the protein. Additionally, the structure and function of the free and nanoparticle-immobilized protein is compared to identify any relationship between protein thiolation and protein structure/function upon adsorption to a nanoparticle. Successful completion of this project drives the novel design of highly active and stable protein-AuNP conjugates that is critically needed to advance bioconjugate-enabled platform technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系大分子,超分子和纳米化学项目的支持下,伊利诺伊州州立大学的Jeremy Driskell教授将化学合成和先进的化学分析工具相结合,研究蛋白质如何吸附到金纳米颗粒上,并保持或增强其生物功能。该研究确定了蛋白质和纳米颗粒之间的关键相互作用,可用于防止蛋白质展开并促进从纳米颗粒表面的受控释放。Driskell教授和他的学生正在化学修饰蛋白质,以安装对金纳米颗粒具有高亲和力的化学锚,并测量吸附蛋白质层的稳定性和生物功能。他们的发现可能会导致预测性设计参数,以形成强大的和高功能的蛋白质纳米粒子探针,并广泛影响现代生物传感,医学成像,药物输送和生物催化。该项目为本科生提供支持,让他们参与沉浸式的研究体验,学习先进的分析技术,并对解决问题的多学科方法表示赞赏。此外,与伊利诺伊州研究学院合作,Driskell博士和他支持的本科生为高中生提供了一个激烈的,但监督,研究经验。详细了解蛋白质-纳米颗粒界面对于减轻对吸附蛋白质功能产生负面影响的结构变化以及利用增强蛋白质功能的稳定相互作用至关重要。假设蛋白质上的表面可接近的硫醇主要负责吸附到金纳米颗粒上并形成硬冠;因此,可以利用精确控制蛋白质硫醇数量的能力来优化生物缀合物功能。提出了一种在一系列酶上安装巯基官能团的合成策略。优化反应条件以精确控制硫醇的数量,并通过高分辨率质谱、zeta电位和Ellman试剂进行监测。吸附亲和力,使用纳米粒子跟踪分析,和蛋白质交换率,通过竞争性蛋白质结合测定,定量评估,与表面可访问的巯基的蛋白质的数量。此外,比较游离蛋白质和纳米颗粒固定的蛋白质的结构和功能,以鉴定蛋白质巯基化与吸附至纳米颗粒后的蛋白质结构/功能之间的任何关系。该项目的成功完成推动了高活性和稳定的蛋白质-金纳米粒子结合物的新设计,这是推进生物结合物支持平台技术所急需的。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jeremy Driskell其他文献

Jeremy Driskell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jeremy Driskell', 18)}}的其他基金

RUI: Charge Modified Antibody for Robust and Directional Adsorption onto Gold Nanoparticles
RUI:电荷修饰抗体,可牢固、定向吸附到金纳米颗粒上
  • 批准号:
    1807126
  • 财政年份:
    2018
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Standard Grant

相似海外基金

Development of tendon/ligament repair modulater using a chemically modified Tetra-PEG gel with signal transduction capability
使用具有信号转导能力的化学改性 Tetra-PEG 凝胶开发肌腱/韧带修复调节剂
  • 批准号:
    23K18325
  • 财政年份:
    2023
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Probing and manipulating the bacterial cell wall using chemically modified sugars
使用化学修饰糖探测和操纵细菌细胞壁
  • 批准号:
    2885428
  • 财政年份:
    2023
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Studentship
A New Class of Chemically Modified Small RNA Inhibitors against Fusobacterium nucleatum
一类新型化学修饰小 RNA 抑制剂,抗具核梭杆菌
  • 批准号:
    10875055
  • 财政年份:
    2023
  • 资助金额:
    $ 37.69万
  • 项目类别:
Quantifying the Effects of Disorder and Lateral Interactions on Chemically Modified Carbon Electrodes: Molecular Insights to Rationally Design Electrochemical Performance
量化无序和横向相互作用对化学修饰碳电极的影响:合理设计电化学性能的分子洞察
  • 批准号:
    2305065
  • 财政年份:
    2023
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Standard Grant
Stiffness and Compressibility of Chemically Modified Phytoglycogen Nanoparticles
化学修饰植物糖原纳米颗粒的刚度和可压缩性
  • 批准号:
    575894-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Synthesis and Applications of Chemically-Modified Oligonucleotides
化学修饰寡核苷酸的合成及应用
  • 批准号:
    RGPIN-2019-04692
  • 财政年份:
    2022
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Discovery Grants Program - Individual
A New Class of Chemically Modified Small RNA Inhibitors against Fusobacterium nucleatum
一类新型化学修饰小 RNA 抑制剂,抗具核梭杆菌
  • 批准号:
    10534754
  • 财政年份:
    2022
  • 资助金额:
    $ 37.69万
  • 项目类别:
A New Class of Chemically Modified Small RNA Inhibitors against Fusobacterium nucleatum
一类新型化学修饰小 RNA 抑制剂,抗具核梭杆菌
  • 批准号:
    10353249
  • 财政年份:
    2022
  • 资助金额:
    $ 37.69万
  • 项目类别:
Aerosolized Chemically Modified Tetracycline Nanoformulation for the Treatment of Acute Respiratory Distress Syndrome
雾化化学修饰四环素纳米制剂治疗急性呼吸窘迫综合征
  • 批准号:
    10602896
  • 财政年份:
    2022
  • 资助金额:
    $ 37.69万
  • 项目类别:
Creation of bioactive implants using chemically modified amino acid sequences from EMD
使用来自 EMD 的化学修饰氨基酸序列创建生物活性植入物
  • 批准号:
    21K09946
  • 财政年份:
    2021
  • 资助金额:
    $ 37.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了