CAS-Climate: Spectromicroscopy of Elementary Steps in Catalytic Reactions

CAS-Climate:催化反应中基本步骤的光谱显微镜

基本信息

  • 批准号:
    2204042
  • 负责人:
  • 金额:
    $ 48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

With support from the Chemical Measurement and Imaging (CMI) Program in the Division of Chemistry, a research team led by Professors Wilson Ho and Ruqian Wu from the Departments of Chemistry and Physics and Astronomy, respectively, at the University of California-Irvine is developing a sophisticated measurement approach for studying the catalytic chemistry of carbon dioxide, an important greenhouse gas. This research has the potential to provide fundamental understanding that is needed to help develop the chemistry of carbon sequestration a very important environmental/climate science goal. An important objective is the application of sophisticated measurement tools to probe the mechanism for conversion of carbon dioxide to higher-value hydrocarbons using single-atom catalysts. Catalysis by single metal atoms deposited on a substrate enables conservation of valuable metals. This project will examine how metal atoms bind reactants and serve as catalytic centers for directed chemical reactions that are stimulated by electrons and light, rather than by heat. The team is working to combine chemical measurement and imaging at the atomic scale with theoretical calculations in order to characterize and visualize intermediate species that remain challenging to identify but whose observation would facilitate mechanistic understanding and thereby enable the development of catalysts for targeted reaction courses. This project seeks to provide missing knowledge that is crucial for controlling the chemistry of carbon dioxide while also advancing the state-of-the-art in precision measurement and theoretical methodology for studying the chemistry of single-atom catalysts. In addition to addressing one of the most consequential challenges in chemistry and the global implications for moderating climate change, the broader impacts of the work are enhanced by the emphasis on basic principles of chemical reactions that are transferrable to the classroom. Broader impacts of the project will include demonstrations involving liquid nitrogen and vacuum for middle school students from nearby underserved communities. The educational impact of the project will be enhanced through education and outreach activities in collaboration with the University of California-Irvine Eddleman Quantum Institute and the NSF Materials Research Science and Engineering Center, including opportunities to connect with high school students and undergraduate and graduate students from surrounding universities.The nature of complex interactions between atoms, molecules, and substrates has for many years confounded insights into catalytic reactions. The design of effective catalysts is among the most urgent fundamental and technological challenges for energy harvesting and environmental protection. Chemical reactions occur rapidly and often indiscriminately in complex environment and at elevated temperature, and details of the reactions are difficult to obtain by density functional theory calculations and large ensemble statistical experiments. It is desirable to be able to measure and control chemical reactions step-by-step and associated intermediate species. This research explores with the scanning tunneling microscope (STM) the smallest catalytic centers in chemistry: a single active atom on an inert two-dimensional van der Waals monolayer or ultrathin insulating film. The reactions under study will proceed by inducing with different stimuli: mechanical motion of the tip, tunneling electrons, and light illumination. Furthermore, the spectro-microscopy capability is expected to provide direct real-space visualization of individual chemical bonds and skeletal structure of the chemical species. A deeper understanding of the local chemistry and reaction kinetics will rely on first-principles calculations to explain the data and make predictions to guide the experimental effort. This project will focus on the reduction of carbon dioxide to value-added hydrocarbons as fuels and will examine intermediate species with different electronic, vibrational, spin, structural, and energetic properties. The combined experiment-theory effort is designed to identify and identify these species and provide molecular-level information about their properties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系化学测量与成像(CMI)项目的支持下,由加州大学欧文分校化学系、物理系和天文学系的Wilson Ho教授和Ruqian Wu教授领导的一个研究小组正在开发一种复杂的测量方法,用于研究二氧化碳(一种重要的温室气体)的催化化学。这项研究有可能提供基本的理解,这有助于发展碳封存的化学作用,这是一个非常重要的环境/气候科学目标。一个重要的目标是应用复杂的测量工具来探测利用单原子催化剂将二氧化碳转化为高价值碳氢化合物的机制。沉积在衬底上的单个金属原子的催化作用使贵重金属得以保存。这个项目将研究金属原子如何结合反应物,并作为定向化学反应的催化中心,这种化学反应是由电子和光而不是由热刺激的。该团队正在努力将原子尺度的化学测量和成像与理论计算相结合,以表征和可视化中间物质,这些中间物质仍然具有挑战性,但其观察将促进机理理解,从而使目标反应过程的催化剂得以开发。该项目旨在提供对控制二氧化碳化学至关重要的缺失知识,同时也推进了最先进的精确测量和研究单原子催化剂化学的理论方法。除了解决化学中最重要的挑战之一和缓和气候变化的全球影响外,通过强调可转移到课堂上的化学反应的基本原理,这项工作的更广泛影响得到了加强。该项目的更广泛影响将包括为附近服务不足社区的中学生演示液氮和真空。该项目的教育影响将通过与加州大学欧文分校Eddleman量子研究所和美国国家科学基金会材料研究科学与工程中心合作的教育和推广活动来增强,包括与高中学生以及来自周边大学的本科生和研究生联系的机会。多年来,原子、分子和底物之间复杂相互作用的性质一直困扰着人们对催化反应的认识。有效催化剂的设计是能源收集和环境保护最紧迫的基础和技术挑战之一。化学反应在复杂环境和高温条件下发生迅速且往往是不加区分的,通过密度泛函理论计算和大型系综统计实验难以获得反应的细节。希望能够一步一步地测量和控制化学反应和相关的中间物质。本研究利用扫描隧道显微镜(STM)探索了化学中最小的催化中心:惰性二维范德华单层或超薄绝缘膜上的单个活性原子。所研究的反应将通过不同的刺激诱导进行:尖端的机械运动、隧穿电子和光照。此外,光谱显微镜的能力有望提供单个化学键和化学物种的骨架结构的直接实时空间可视化。对局部化学和反应动力学的更深入了解将依赖第一性原理计算来解释数据并做出预测来指导实验工作。该项目将专注于将二氧化碳转化为作为燃料的增值碳氢化合物,并将研究具有不同电子、振动、自旋、结构和能量特性的中间物质。结合实验理论的努力旨在识别和识别这些物种,并提供有关其性质的分子水平信息。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilson Ho其他文献

Chemical imaging of single 4,7,12,15-tetrakis[2.2]paracyclophane by spatially resolved vibrational spectroscopy.
通过空间分辨振动光谱对单个 4,7,12,15-四[2.2]对环芳烷进行化学成像。
  • DOI:
    10.1063/1.2815814
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ning Liu;C. Silien;Wilson Ho;J. B. Maddox;S. Mukamel;Bin Liu;Guillermo Carlos Bazan
  • 通讯作者:
    Guillermo Carlos Bazan
Chemisorption and dissociation of single oxygen molecules on Ag110.
Ag110 上单个氧分子的化学吸附和解离。
Vibrational spectroscopy of individual doping centers in a monolayer organic crystal.
单层有机晶体中各个掺杂中心的振动光谱。
  • DOI:
    10.1063/1.1908719
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Nazin;X. Qiu;Wilson Ho
  • 通讯作者:
    Wilson Ho
Suppression of NRAS-mutant melanoma growth with NRAS-targeting Antisense Oligonucleotide treatment reveals therapeutically relevant kinase co-dependencies
  • DOI:
    10.1038/s43856-025-00932-5
  • 发表时间:
    2025-06-05
  • 期刊:
  • 影响因子:
    6.300
  • 作者:
    Valentin Feichtenschlager;Yixuan James Zheng;Tiange Qu;Dasha Hohlova;Ciara Callanan;Linan Chen;Christopher Chen;Wilson Ho;Albert Lee;Yeonjoo Hwang;Arowyn Courtright;Thy Nguyen;Olivia Marsicovetere;Denise P. Muñoz;Klemens Rappersberger;Jean-Philippe Coppe;Susana Ortiz-Urda
  • 通讯作者:
    Susana Ortiz-Urda
Imaging single electron spin in a molecule trapped within a nanocavity of tunable dimension.
对被困在尺寸可调的纳米腔内的分子中的单电子自旋进行成像。

Wilson Ho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilson Ho', 18)}}的其他基金

Imaging, Manipulation, and Control of Molecular Quantum Systems
分子量子系统的成像、操纵和控制
  • 批准号:
    1905121
  • 财政年份:
    2019
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Multidimensional Spectromicroscopy of Molecular Magnetism
分子磁性的多维光谱显微镜
  • 批准号:
    1809127
  • 财政年份:
    2018
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Four-Dimensional Probe of Electron Spin-Spin Coupling
电子自旋-自旋耦合四维探针
  • 批准号:
    1411338
  • 财政年份:
    2014
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Atomic Scale Chemistry
原子尺度化学
  • 批准号:
    0606520
  • 财政年份:
    2006
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Chemistry at the Spatial Limit
空间极限的化学
  • 批准号:
    0102887
  • 财政年份:
    2001
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Development of a 300 mK-10 Tesla Scanning Tunneling Microscope for Nanoscience Research and Education
开发用于纳米科学研究和教育的 300 mK-10 Tesla 扫描隧道显微镜
  • 批准号:
    0114246
  • 财政年份:
    2001
  • 资助金额:
    $ 48万
  • 项目类别:
    Standard Grant
Single Molecule Chemistry by Tunneling Electrons
通过电子隧道进行单分子化学
  • 批准号:
    9707195
  • 财政年份:
    1998
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Charge Transfer and Scattering Dynamics in Kiloelectron Volt and Hyperthermal Energy Ion-Surface Collisions
千电子伏和超热能离子表面碰撞中的电荷转移和散射动力学
  • 批准号:
    9722771
  • 财政年份:
    1997
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Excited States in Surface Photochemistry
表面光化学中的激发态
  • 批准号:
    9417866
  • 财政年份:
    1995
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant
Photochemistry on Metal Surfaces at Low Temperatures
低温金属表面的光化学
  • 批准号:
    9015823
  • 财政年份:
    1991
  • 资助金额:
    $ 48万
  • 项目类别:
    Continuing Grant

相似海外基金

Store Electricity and Heat foR climatE Neutral Europe (SEHRENE)
为欧洲气候中和储存电力和热能 (SEHRENE)
  • 批准号:
    10105664
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    EU-Funded
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
  • 批准号:
    AH/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Research Grant
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
  • 批准号:
    AH/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Research Grant
Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
  • 批准号:
    DP240100230
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Projects
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
  • 批准号:
    DP240100968
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Projects
Identifying key fire drivers in Australia; biomass, climate or people
确定澳大利亚的主要火灾驱动因素;
  • 批准号:
    DE240100340
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Early Career Researcher Award
Landscape-climate disequilibrium in dune fields
沙丘地区的景观-气候不平衡
  • 批准号:
    DE240100552
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Early Career Researcher Award
Quantifying climate change impacts for wetlands in agricultural landscapes
量化气候变化对农业景观中湿地的影响
  • 批准号:
    DE240100477
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Discovery Early Career Researcher Award
Cities as transformative agents for a climate-safe future
城市是气候安全未来的变革推动者
  • 批准号:
    FL230100021
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Australian Laureate Fellowships
The global impact of high summer temperature on heatstroke mortality in the current climate scenario
当前气候情景下夏季高温对中暑死亡率的全球影响
  • 批准号:
    24K13527
  • 财政年份:
    2024
  • 资助金额:
    $ 48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了