Explorations in Entanglement and Knotting in Low-Dimensional Topology

低维拓扑中纠缠与打结的探索

基本信息

  • 批准号:
    2204148
  • 负责人:
  • 金额:
    $ 29.46万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Knots and links are closed loops in a 3-dimensional environment, possibly entwined in an interesting or complicated configuration. Knotting, linking, and entanglement occur in a broad range of physical phenomena. DNA can become linked and unlinked, or knotted and unknotted, during replication, recombination, and in other enzymatic reactions. The global topology of knotted nucleic acids and the local activity of enzymes can be modeled with objects and operations from knot theory. At the same time, the relationship of knotted structures with three and four-dimensional manifolds plays a central role in leading-edge geometry and topology, where recent mathematical developments have provided new tools with which to formally investigate knotting and linking. This project is centered on the theory and applications of knots, links, and tangles from the perspective of low-dimensional topology. Potential benefits of this project are advances in our understanding of unknotting operations, uncovering new relationships between invariants of links and three-manifolds, and providing a more robust mathematical framework for the modeling and analysis of enzymatic activities and topological structures of biopolymers. This award will increase mathematical literacy and promote broad dissemination of knowledge by supporting an online database of knot and link invariants (KnotInfo) and a lecture series at Virginia Commonwealth University that promotes emerging research topics while emphasizing achievements of underrepresented people and women.The central objects of focus in this project are invariants of knots, links, and tangles. The research uses Floer homology, Khovanov homology, and techniques in geometric topology to explore the relationships between knots, links, and three-manifolds. The first aim is to resolve fundamental questions in knot theory on crossing changes, tangle decompositions, and unknotting. New interpretations of Heegaard Floer and Khovanov-theoretic invariants of tangles in terms of immersed curves on surfaces are a major component of the methodology. The second aim is to investigate the relationship between invariants of links and three-manifolds through an exploration of Milnor's invariants and Dehn surgery. The third aim seeks to uncover new connections between knot theory and the structure of biopolymers, and to probe the broad geometric structure of Gordian-type knot graphs with methodology in geometric and low-dimensional topology and graph theory. The project includes biologically motivated questions that center on spatial theta-curves and models of entanglement in nucleic acids. The project provides avenues for graduate and undergraduate students to contribute to research in theoretical and applied knot theory.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
结和链接是三维环境中的闭合环,可能以有趣或复杂的配置包围。打结、连接和缠结在广泛的物理现象中发生。DNA在复制、重组和其他酶反应中可以连接和断开,或打结和解开。打结核酸的全局拓扑结构和酶的局部活性可以用来自结理论的对象和操作来建模。与此同时,纽结结构与三维和四维流形的关系在前沿几何学和拓扑学中起着核心作用,最近的数学发展为正式研究纽结和链接提供了新的工具。本项目从低维拓扑学的角度研究结、链接和缠结的理论和应用。该项目的潜在好处是我们对解结操作的理解的进步,揭示了链接和三流形的不变量之间的新关系,并为生物聚合物的酶活性和拓扑结构的建模和分析提供了更强大的数学框架。该奖项将通过支持结和链接不变量的在线数据库(KnotInfo)和弗吉尼亚联邦大学的系列讲座来提高数学素养并促进知识的广泛传播,该系列讲座在促进新兴研究主题的同时强调代表性不足的人和妇女的成就。该项目的中心焦点对象是结,链接和缠结的不变量。本研究使用Floer同调、Khovanov同调以及几何拓扑学中的技巧来探讨节点、链接与三流形之间的关系。第一个目标是解决结理论中关于交叉变化、缠结分解和解结的基本问题。新的解释Heegaard Floer和Khovanov理论不变量的缠结在浸没曲线的表面上的方法的一个重要组成部分。第二个目的是通过对Milnor不变量和Dehn手术的探索,研究链环不变量和三维流形之间的关系。第三个目标是揭示纽结理论与生物聚合物结构之间的新联系,并利用几何和低维拓扑学和图论的方法来探索Gordian型纽结图的广泛几何结构。该项目包括以空间θ曲线和核酸纠缠模型为中心的生物学动机问题。该项目为研究生和本科生提供了在理论和应用纽结理论方面做出贡献的途径。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allison Moore其他文献

STILL MEDICALLY COMPLEX ALLOGRAFTS? THE RISE OF DCD’s
仍然是医学上复杂的同种异体移植物?DCD 的兴起
  • DOI:
    10.1016/j.ajt.2024.12.122
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
    8.200
  • 作者:
    Allison Moore;Catherine Pratt;Christine Haugen;Kristina Lemon;Ralph Quillin;Shimul Shah
  • 通讯作者:
    Shimul Shah
Disparities in Emergent Versus Elective Surgery: Comparing Measures of Neighborhood Social Vulnerability.
紧急手术与择期手术的差异:社区社会脆弱性衡量标准的比较。
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    H. Carmichael;Allison Moore;Lauren T. Steward;C. Velopulos
  • 通讯作者:
    C. Velopulos
Creating champions for open source rare disease drug discovery with an app
  • DOI:
    10.1016/j.ymgme.2013.12.078
  • 发表时间:
    2014-02-01
  • 期刊:
  • 影响因子:
  • 作者:
    Sean Ekins;Jill Wood;Lori Sames;Allison Moore;Alex M. Clark
  • 通讯作者:
    Alex M. Clark
Immigrating to Unsafe Spaces: Unique Patterns of Homicide in Immigrant Victims Compared to Native-Born Citizens.
移民到不安全的地方:与本地出生的公民相比,移民受害者的独特凶杀模式。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Joshua Abolarin;Q. W. Myers;H. Carmichael;Allison Moore;C. Velopulos
  • 通讯作者:
    C. Velopulos
Sex Differences in Violent Death During Incarceration and Legal Intervention.
监禁期间暴力死亡的性别差异和法律干预。
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Dorothy R. Stearns;Allison Moore;Q. W. Myers;H. Carmichael;C. Velopulos
  • 通讯作者:
    C. Velopulos

Allison Moore的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Integrated sources of multiphoton entanglement for enabling quantum interconnects
职业:用于实现量子互连的多光子纠缠集成源
  • 批准号:
    2339469
  • 财政年份:
    2024
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Continuing Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Research Grant
QuSeC-TAQS: Distributed Entanglement Quantum Sensing of Atmospheric and Aerosol Chemistries
QuSeC-TAQS:大气和气溶胶化学的分布式纠缠量子传感
  • 批准号:
    2326840
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Entanglement- Enhanced Multiphoton Fluorescence Imaging of in Vivo Neural Function
QuSeC-TAQS:体内神经功能的纠缠增强多光子荧光成像
  • 批准号:
    2326758
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMREF: Designing Coherence and Entanglement in Perovskite Quantum Dot Assemblies
合作研究:DMREF:设计钙钛矿量子点组件中的相干性和纠缠
  • 批准号:
    2324300
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
CAREER: Generation and detection of large-scale quantum entanglement on an integrated photonic chip
职业:在集成光子芯片上生成和检测大规模量子纠缠
  • 批准号:
    2238096
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Continuing Grant
Ultrafast Strong-Field Control of Coherence and Entanglement in Atoms and Molecules
原子和分子相干和纠缠的超快强场控制
  • 批准号:
    2309238
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Standard Grant
Precise test of the B-meson quantum entanglement based on a new method for event topology determination
基于事件拓扑确定新方法的B介子量子纠缠精确测试
  • 批准号:
    23K03429
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantum entanglement with atoms: from individual pairs to many-body systems
原子的量子纠缠:从个体对到多体系统
  • 批准号:
    FT220100670
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    ARC Future Fellowships
Study on CARS enhancement with quantum entanglement aiming at noninvasive glucose monitoring
针对无创血糖监测的量子纠缠CARS增强研究
  • 批准号:
    23K19224
  • 财政年份:
    2023
  • 资助金额:
    $ 29.46万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了