Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics

几何散射理论、分辨估计和波渐近学

基本信息

  • 批准号:
    2204322
  • 负责人:
  • 金额:
    $ 13.2万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-15 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

This research project studies the propagation of waves in non-smooth media. Wave and Schrödinger equations are important partial differential equations that describe how waves, including sound, light, and gravitational waves, propagate in the natural world. Much is known about the behavior of solutions to these equations when the underlying media are smooth. However, most practical applications involve waves propagating in media that contain obstructions or discontinuities. The aim of this project is to resolve open questions about how waves scatter and decay when the underlying medium is not smooth. The results of the project are expected to inform predictions in several applications involving wave behavior in non-smooth media, including the propagation of seismic waves, the behavior of plasma, and light propagation in optical fibers. The project will contribute to the training of undergraduate and graduate students in a central, active area of mathematical physics.This project concerns research in geometric scattering theory. The project has two objectives. The first is to prove upper bounds on the resolvent of the semiclassical Schrödinger operator in limited regularity. Such resolvent bounds are a precursor to local energy decay rates for rough wave equations. The second objective is to use the recently developed Fredholm method to establish the existence of scattering-type eigenfunctions for a wide class of nonlinear Helmholtz equations. The main tools for this project come from semiclassical and microlocal analysis. In particular, the principal investigator aims to extend positive commutator and Carleman estimates, separation of variables, and b-vector field analysis to Schrödinger operators with low regularity coefficients. This will yield high frequency resolvent estimates, and in turn precise energy decay rates for waves traveling in heterogeneous media.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本研究项目研究波在非光滑介质中的传播。波和薛定谔方程是描述波(包括声波、光和引力波)如何在自然界中传播的重要偏微分方程式。当底层介质是光滑的时,关于这些方程的解的行为已知很多。然而,大多数实际应用涉及到波在含有障碍物或不连续的介质中传播。这个项目的目的是解决当底层介质不光滑时,波如何散射和衰减的公开问题。该项目的结果有望为涉及非光滑介质中的波行为的几个应用领域的预测提供参考,包括地震波的传播、等离子体的行为和光纤中的光传播。该项目将有助于培养本科生和研究生在一个中心的,活跃的数学物理领域。这个项目涉及几何散射理论的研究。该项目有两个目标。首先证明了半经典薛定谔算子在有限正则性下预解的上界。这样的预解边界是粗波方程局部能量衰减率的先兆。第二个目标是利用最近发展起来的Fredholm法来证明一大类非线性Helmholtz方程的散射型本征函数的存在性。这个项目的主要工具来自半经典和微局部分析。特别是,主要研究人员的目标是将正交换子和Carleman估计、分离变量和b向量场分析推广到具有低正则系数的薛定谔算子。这将产生高频分辨率估计,进而为波在不同介质中传播的精确能量衰减率。该奖项反映了NSF的法定使命,通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semiclassical resolvent bounds for compactly supported radial potentials
紧支撑径向势的半经典解析界限
  • DOI:
    10.1016/j.jfa.2022.109835
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Datchev, Kiril;Galkowski, Jeffrey;Shapiro, Jacob
  • 通讯作者:
    Shapiro, Jacob
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Shapiro其他文献

Incomplete localization for disordered chiral strips
无序手性带的不完全定位
Is the continuum SSH model topological?
连续体 SSH 模型是拓扑的吗?
  • DOI:
    10.1063/5.0064037
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Jacob Shapiro;M. Weinstein
  • 通讯作者:
    M. Weinstein
Semiclassical resolvent bounds for weakly decaying potentials
弱衰变势的半经典解析界限
Semiclassical resolvent bound for compactly supporte $L^infty$ potentials
紧支持 $L^infty$ 势的半经典解析限
Comparison of Artificial Intelligence Versus Radiologist Interpretation of Right Ventricular to Left Ventricular Ratio for Pulmonary Embolism Response Team Activations at a Tertiary Referral Center
在一家三级转诊中心,人工智能与放射科医生对肺动脉栓塞反应小组激活的右心室与左心室比率解读的比较

Jacob Shapiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Shapiro', 18)}}的其他基金

ATD: Collaborative Research: Efficient sampling for real-time detection and isolation of threats in networks
ATD:协作研究:实时检测和隔离网络威胁的高效采样
  • 批准号:
    1737906
  • 财政年份:
    2017
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Continuing Grant

相似国自然基金

Lagrangian origin of geometric approaches to scattering amplitudes
  • 批准号:
    24ZR1450600
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
微波有源Scattering dark state粒子的理论及应用研究
  • 批准号:
    61701437
  • 批准年份:
    2017
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a new EBSD analysis method combining dynamical scattering theory and machine learning
结合动态散射理论和机器学习开发新的 EBSD 分析方法
  • 批准号:
    23H01276
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Modern field and scattering theory for fundamental physics
基础物理的现代场和散射理论
  • 批准号:
    2887909
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Studentship
Postdoctoral Fellowship: MPS-Ascend: "Effective Field Theory Approach to Nuclear Structure for Next Generation of High-Energy Scattering Experiments"
博士后奖学金:MPS-Ascend:“下一代高能散射实验核结构的有效场论方法”
  • 批准号:
    2316701
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Fellowship Award
microscopic foundation of the shell model based on the scattering theory and the many-body perturbation theory
基于散射理论和多体摄动理论的壳模型微观基础
  • 批准号:
    23K03420
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies of multi-dimensional quantum walks by spectral scattering theory
光谱散射理论研究多维量子行走
  • 批准号:
    23K03224
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    DE230101165
  • 财政年份:
    2023
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Discovery Early Career Researcher Award
Novel Sampling Methods for Electromagnetic Inverse Scattering Theory
电磁逆散射理论的新颖采样方法
  • 批准号:
    2208293
  • 财政年份:
    2022
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Standard Grant
Electromagnetic Scattering from a Large Cavity in Heterogeneous Media: Theory and Algorithm
异质介质中大空腔的电磁散射:理论和算法
  • 批准号:
    567866-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Postdoctoral Fellowships
Radio Wave Scattering from Rough Surfaces -- Theory and Application to Maritime Remote Sensing with HF and other Radar Technologies
粗糙表面的无线电波散射——高频和其他雷达技术海上遥感的理论与应用
  • 批准号:
    RGPIN-2020-05003
  • 财政年份:
    2022
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Discovery Grants Program - Individual
Theory of Dark Matter Scattering
暗物质散射理论
  • 批准号:
    565502-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 13.2万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了