ATD: Collaborative Research: Efficient sampling for real-time detection and isolation of threats in networks

ATD:协作研究:实时检测和隔离网络威胁的高效采样

基本信息

  • 批准号:
    1737906
  • 负责人:
  • 金额:
    $ 8万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

While modern technologies generate multiple, interconnected sources of data, which can be observed in nearly real time, physical constraints and budget limitations require efficient sampling of these data streams. Incorporating such constraints in the design of threat detection systems has the potential to lead to significant savings in resources. The goal of this project is to develop fundamental statistical theory and methods for the efficient, real-time sampling of networks, and the subsequent detection, identification and prevention of threats of different nature, such as terrorist activities and credit fraud. The developed methodologies will be tested on real-world data, where the underlying community structure in times of crisis will be discovered using cell-phone call records. The theoretical knowledge that will be gained in this project will be incorporated into the material of graduate-level courses that cover adaptive experimental design and sequential detection. Two graduate students will contribute significantly in this research. The project will make every effort to include qualified students of underrepresented groups in these research activities.This research will address two fundamental research questions: 1) how to detect and identify, in real time, anomalous clusters in network data subject to sampling constraints, and 2) how to efficiently allocate limited resources in order to delay or prevent the realization of threats from the identified anomalous clusters. The mathematical formulation of these questions leads to novel problems in network-based, adaptive experimental design and sequential detection, whose solutions require the creative combination of tools from various fields, such as statistical inference, sequential analysis, and information theory. The theory and methods developed in this work will guide the development of threat detection algorithms and will be tested in concrete applications, such as social networks in times of crisis that will be discovered based on cell-phone call data. Overall, this is a multidisciplinary proposal, spanning social sciences, statistics, and engineering, whose goal is to obtain an arsenal of efficient network sampling schemes and novel threat detection algorithms, grounded on a strong theoretical background.
虽然现代技术产生了多个相互关联的数据源,几乎可以在真实的时间内观察到,但物理限制和预算限制要求对这些数据流进行有效采样。在威胁检测系统的设计中阐明这些约束有可能导致资源的显著节省。该项目的目标是发展基本的统计理论和方法,以便对网络进行有效的实时采样,并随后发现、识别和预防不同性质的威胁,如恐怖活动和信贷欺诈。将在真实世界的数据上测试所开发的方法,其中将使用手机通话记录来发现危机时期的潜在社区结构。将在这个项目中获得的理论知识将被纳入研究生课程的材料,包括自适应实验设计和顺序检测。两名研究生将在这项研究中做出重大贡献。本研究将解决两个基本的研究问题:1)如何真实的实时地检测和识别网络数据中受采样约束的异常集群; 2)如何有效地分配有限的资源,以延迟或防止来自所识别的异常集群的威胁的实现。这些问题的数学表述导致了基于网络的自适应实验设计和顺序检测中的新问题,其解决方案需要来自各个领域的工具的创造性组合,例如统计推断,顺序分析和信息论。在这项工作中开发的理论和方法将指导威胁检测算法的开发,并将在具体应用中进行测试,例如在危机时期的社交网络,将根据手机通话数据进行发现。总的来说,这是一个多学科的建议,跨越社会科学,统计学和工程学,其目标是获得一个有效的网络采样方案和新颖的威胁检测算法的武器库,以强大的理论背景为基础。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jacob Shapiro其他文献

Incomplete localization for disordered chiral strips
无序手性带的不完全定位
Is the continuum SSH model topological?
连续体 SSH 模型是拓扑的吗?
  • DOI:
    10.1063/5.0064037
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Jacob Shapiro;M. Weinstein
  • 通讯作者:
    M. Weinstein
Semiclassical resolvent bounds for weakly decaying potentials
弱衰变势的半经典解析界限
Semiclassical resolvent bound for compactly supporte $L^infty$ potentials
紧支持 $L^infty$ 势的半经典解析限
Comparison of Artificial Intelligence Versus Radiologist Interpretation of Right Ventricular to Left Ventricular Ratio for Pulmonary Embolism Response Team Activations at a Tertiary Referral Center
在一家三级转诊中心,人工智能与放射科医生对肺动脉栓塞反应小组激活的右心室与左心室比率解读的比较

Jacob Shapiro的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jacob Shapiro', 18)}}的其他基金

Geometric Scattering Theory, Resolvent Estimates, and Wave Asymptotics
几何散射理论、分辨估计和波渐近学
  • 批准号:
    2204322
  • 财政年份:
    2022
  • 资助金额:
    $ 8万
  • 项目类别:
    Continuing Grant

相似海外基金

Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219956
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: a-DMIT: a novel Distributed, MultI-channel, Topology-aware online monitoring framework of massive spatiotemporal data
合作研究:ATD:a-DMIT:一种新颖的分布式、多通道、拓扑感知的海量时空数据在线监测框架
  • 批准号:
    2220495
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319370
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319552
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Fast Algorithms and Novel Continuous-depth Graph Neural Networks for Threat Detection
合作研究:ATD:用于威胁检测的快速算法和新颖的连续深度图神经网络
  • 批准号:
    2219904
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319371
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Rapid Structure Recovery and Outlier Detection in Multidimensional Data
合作研究:ATD:多维数据中的快速结构恢复和异常值检测
  • 批准号:
    2319372
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
Collaborative Research: ATD: Geospatial Modeling and Risk Mitigation for Human Movement Dynamics under Hurricane Threats
合作研究:ATD:飓风威胁下人类运动动力学的地理空间建​​模和风险缓解
  • 批准号:
    2319551
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220523
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: A Geostatistical Framework for Spatiotemporal Extremes
ATD:协作研究:时空极值的地统计框架
  • 批准号:
    2220529
  • 财政年份:
    2023
  • 资助金额:
    $ 8万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了