Ricci Flow
利玛窦流
基本信息
- 批准号:2204364
- 负责人:
- 金额:$ 62.61万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2026-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
A Ricci flow is a geometric process that can be used to improve a given geometry towards a more homogeneous one. Ricci flows have gained increasing interest, as they have been used to prove various longstanding conjectures, such as the Poincaré and Geometrization Conjectures, as well as the Generalized Smale Conjecture in dimension 3. The general expectation is that a Ricci flow produces a geometry in the limit that is in some sense inherent to the topology, that is, the loose makeup, of the underlying space. However, usually a Ricci flow incurs complicated singularities in finite time. In dimension 3, these singularities can be removed manually by a so-called surgery construction and the flow can be continued beyond them. The long-term goal of this project is to generalize this surgery construction to dimension 4, and possibly higher. To achieve this, the PI will study the singularity formation of higher dimensional Ricci flows, using a new theory he recently found. A successful construction in dimension 4 may have interesting topological and geometric applications. The PI will also further study Ricci flows with surgery, and the closely related "Ricci flows through singularities," in dimension 3 and find further geometric and topological applications. The award provides funds for graduate students to engage in research related to the project.The research project is split into two parts. The first project is a continuation of the PI's recently obtained compactness and partial regularity theory for Ricci flows in higher dimensions. The goal of the project is to use this new theory to construct a "Ricci flow with surgery'" or "Ricci flow through singularities" in dimension 4, generalizing the analogous construction in dimension 3. The strategy for achieving this is to deduce spatial asymptotic estimates on blow-up limits and use these to obtain a qualitative picture of the singularity formation. Based on this picture, the next step is to remove singularities via cylindrical and conical surgery constructions. The project also aims to characterize the long-time asymptotics of the flow. A successful construction and analysis may lead to several interesting topological and geometric applications. The second project continues work of the PI and collaborator on the uniqueness and continuous dependence of 3-dimensional singular Ricci flows through singularities. Previous work used this continuous dependence to resolve the Generalized Smale Conjecture (which classifies diffeomorphism groups of certain 3-manifolds up to homotopy) and a conjecture regarding the space of metrics with positive scalar curvature on 3-manifolds. This project will study more deeply the techniques used in these proofs, which have the potential to produce further results.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
Ricci流是一种几何过程,可以用来改进给定的几何形状,使其更均匀。Ricci流已经获得了越来越多的兴趣,因为它们已经被用来证明各种长期存在的猜想,如庞加莱猜想和几何化猜想,以及3维中的广义Smale猜想。一般的期望是,里奇流在极限中产生一种几何,这种几何在某种意义上是拓扑所固有的,也就是说,底层空间的松散构成。然而,通常Ricci流在有限时间内会产生复杂的奇异性。在三维空间中,这些奇点可以通过所谓的外科手术构造手动移除,并且流动可以继续超过它们。这个项目的长期目标是将这种手术构造推广到4维,甚至更高。为了实现这一目标,PI将研究更高维的里奇流的奇点形成,使用他最近发现的一个新理论。在4维成功的建设可能有有趣的拓扑和几何应用。PI还将进一步研究手术的Ricci流,以及密切相关的“Ricci流通过奇点”,在3维中,并找到进一步的几何和拓扑应用。该奖项为研究生从事与项目相关的研究提供资金。研究项目分为两个部分。第一个项目是继续PI最近获得的紧致性和部分正则性理论的Ricci流在更高的维度。该项目的目标是利用这一新的理论来构建四维的“带手术的里奇流”或“通过奇点的里奇流”,推广三维的类似结构。实现这一目标的策略是推导出空间渐近估计爆破限制,并使用这些来获得一个定性的奇异性形成的图片。基于这张图片,下一步是通过圆柱形和圆锥形手术结构来去除奇点。该项目还旨在描述流的长时间渐近特性。一个成功的构造和分析可能会导致几个有趣的拓扑和几何应用。第二个项目继续工作的PI和合作者的独特性和连续依赖的三维奇异里奇流通过奇点。以前的工作使用这种连续的依赖来解决广义Smale猜想(其中分类的同伦群的某些3-流形)和一个猜想关于空间的度量与正标量曲率的3-流形。该项目将更深入地研究这些证明中使用的技术,这些技术有可能产生进一步的结果。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Optimal Volume Growth Estimate for Noncollapsed Steady Gradient Ricci Solitons
- DOI:10.1007/s42543-023-00060-w
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:R. Bamler;Pak-Yeung Chan;Zilu Ma;Yongjia Zhang
- 通讯作者:R. Bamler;Pak-Yeung Chan;Zilu Ma;Yongjia Zhang
Compactness theory of the space of Super Ricci flows
- DOI:10.1007/s00222-023-01196-3
- 发表时间:2020-08
- 期刊:
- 影响因子:3.1
- 作者:R. Bamler
- 通讯作者:R. Bamler
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Bamler其他文献
Richard Bamler的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Bamler', 18)}}的其他基金
Ricci Flows through Singularities and Ricci Flows with Bounded Scalar Curvature
穿过奇点的里奇流和具有有界标量曲率的里奇流
- 批准号:
1906500 - 财政年份:2019
- 资助金额:
$ 62.61万 - 项目类别:
Continuing Grant
On the long-time behavior of Ricci flow and Ricci flow surgery
论Ricci流和Ricci流手术的长期行为
- 批准号:
1611906 - 财政年份:2016
- 资助金额:
$ 62.61万 - 项目类别:
Standard Grant
相似国自然基金
肝硬化患者4D Flow MRI血流动力学与肝脂肪和铁代谢的交互机制研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4D Flow MRI 技术联合HA/cRGD-GD-LPs对比剂增强扫描诊断肝纤维化分期的研究
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4 D-Flow MRI评估吻合口大小对动静脉瘘的血流动力学以及临床预后的影响
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
构建4D-Flow-CFD仿真模型定量评估肝硬化门静脉血流动力学
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于4D-FLOW MRI实现特发性颅内压增高患者静脉窦无创测压和血流动力学分析
- 批准号:82301457
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
结合4D flow的多模态心脏磁共振成像在肥厚型心肌病中的应用研究
- 批准号:
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
驻高海拔地区铁路建设工程项目员工的Flow体验、国家认同与心理韧性:积极环境心理学视角
- 批准号:72271205
- 批准年份:2022
- 资助金额:44 万元
- 项目类别:面上项目
基于Flow-through流场的双离子嵌入型电容去离子及其动力学调控研究
- 批准号:52009057
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
主动脉瓣介导的血流模式致升主动脉重构的4D Flow MRI可视化预测模型研究
- 批准号:82071991
- 批准年份:2020
- 资助金额:56 万元
- 项目类别:面上项目
基于4D Flow MRI探讨侧支循环影响颈内动脉重塑的机制研究
- 批准号:81801139
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPAS-2021-00037 - 财政年份:2022
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPIN-2021-03589 - 财政年份:2022
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Grants Program - Individual
Taub-Bolt and Taub-NUT solutions and their behaviour under the Ricci flow
Taub-Bolt 和 Taub-NUT 解及其在 Ricci 流下的行为
- 批准号:
2747335 - 财政年份:2022
- 资助金额:
$ 62.61万 - 项目类别:
Studentship
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPIN-2021-03589 - 财政年份:2021
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Grants Program - Individual
Ricci flow on compact Kahler manifolds
紧凑型 Kahler 流形上的 Ricci 流
- 批准号:
RGPAS-2021-00037 - 财政年份:2021
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Mean curvature flow and Ricci flow
平均曲率流和里奇流
- 批准号:
RGPIN-2016-04331 - 财政年份:2021
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Grants Program - Individual
Ricci flow from spaces with edge type conical singularities
来自具有边缘型圆锥奇点的空间的利玛窦流
- 批准号:
2443749 - 财政年份:2020
- 资助金额:
$ 62.61万 - 项目类别:
Studentship
Mean curvature flow and Ricci flow
平均曲率流和里奇流
- 批准号:
RGPIN-2016-04331 - 财政年份:2020
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Grants Program - Individual
Ricci flow of manifolds with singularities at infinity
无穷远奇点流形的 Ricci 流
- 批准号:
EP/T019824/1 - 财政年份:2020
- 资助金额:
$ 62.61万 - 项目类别:
Research Grant
Mean curvature flow and Ricci flow
平均曲率流和里奇流
- 批准号:
RGPIN-2016-04331 - 财政年份:2019
- 资助金额:
$ 62.61万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




