CAS: Elucidating How Nanocrystal Structure Controls Electron Flow in Nanocrystal-Enzyme Complexes

CAS:阐明纳米晶体结构如何控制纳米晶体-酶复合物中的电子流

基本信息

  • 批准号:
    2204639
  • 负责人:
  • 金额:
    $ 49.97万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

With support from the Macromolecular, Supramolecular, and Nanochemistry (MSN) program in the Division of Chemistry, Professor Gordana Dukovic of University of Colorado Boulder is combining synthesis, advanced laser techniques, and high-resolution microscopy to follow the flow of electrons in nanocrystal-enzyme complexes capable of light-driven hydrogen production. To make hydrogen, the nanocrystal is first excited by light, increasing the energy of its electrons. These excited electrons must then hop from the nanocrystal to the enzyme, and then make their way to the enzyme's reaction center by hopping from one site to another, like crossing a stream by jumping from stone to stone. Each of these electron hops is important for hydrogen production, but they are difficult to observe and control. Professor Dukovic and her students will measure the times of the critical electron hopping events, and how they depend on nanocrystal structure, surface properties, and binding to the enzyme. Their discoveries could lead to new ways to use sunlight to make chemicals, including solar fuels. Additionally, the project is helping to foster the Nation's science, technology, engineering, and mathematics (STEM) workforce by supporting career development of junior faculty and scientists, as well as the undergraduate education of students from a variety of backgrounds. This project will elucidate the electron pathways involved in photochemical H2 generation that occurs when photoexcited semiconductor nanocrystals transfer electrons to the adsorbed enzyme hydrogenase, which catalyzes proton reduction to H2. The project will examine how properties of nanocrystalline quantum dots (QDs) such as composition, diameter, and surface chemistry impact the QD binding with the enzyme, the transfer of photoexcited electrons, and other critical processes for H2 production, such as hole scavenging and back-electron transfer from the enzyme. The outcome of the project will be an improved understanding of how nanocrystals drive enzyme catalysis. This, in turn, will lead to design principles for how to use the immense tunability of nanocrystal structure and properties to adapt them to drive complex, multi-step light-driven chemistry.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学系大分子,超分子和纳米化学(MSN)计划的支持下,科罗拉多大学博尔德分校的Gordana Dukovic教授将合成,先进的激光技术和高分辨率显微镜相结合,以跟踪能够光驱动制氢的纳米酶复合物中的电子流动。为了制造氢,氢首先被光激发,增加其电子的能量。然后这些被激发的电子必须从电子束跳到酶,然后通过从一个位置跳到另一个位置来到达酶的反应中心,就像通过从一块石头跳到另一块石头来穿越河流一样。这些电子跳跃中的每一个对于氢的产生都很重要,但是它们很难观察和控制。Dukovic教授和她的学生将测量关键电子跳跃事件的时间,以及它们如何依赖于电子结构,表面性质和与酶的结合。他们的发现可能会带来利用阳光制造化学品的新方法,包括太阳能燃料。此外,该项目通过支持初级教师和科学家的职业发展以及来自各种背景的学生的本科教育,帮助培养国家的科学,技术,工程和数学(STEM)劳动力。 该项目将阐明光化学H2生成中涉及的电子途径,当光激发的半导体纳米晶体将电子转移到吸附的氢化酶时发生,氢化酶催化质子还原为H2。该项目将研究纳米晶量子点(QD)的性质,如成分,直径和表面化学如何影响QD与酶的结合,光激发电子的转移以及H2生产的其他关键过程,如空穴清除和酶的背电子转移。该项目的成果将是对纳米晶体如何驱动酶催化的更好理解。这反过来又将导致设计原则,如何利用巨大的可调性的结构和属性,使它们适应驱动复杂的,多步骤的光驱动化学。这个奖项反映了NSF的法定使命,并已被认为是值得通过评估使用基金会的智力价值和更广泛的影响审查标准的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gordana Dukovic其他文献

Hole-scavenging in photo-driven Nsub2/sub reduction catalyzed by a CdS-nitrogenase MoFe protein biohybrid system
硫化镉-固氮酶钼铁蛋白生物杂化体系光驱动氮气还原中空穴清除作用
  • DOI:
    10.1016/j.jinorgbio.2024.112484
  • 发表时间:
    2024-04-01
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Andrew Clinger;Zhi-Yong Yang;Lauren M. Pellows;Paul King;Florence Mus;John W. Peters;Gordana Dukovic;Lance C. Seefeldt
  • 通讯作者:
    Lance C. Seefeldt

Gordana Dukovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gordana Dukovic', 18)}}的其他基金

MRI: Acquisition of a Direct Detection Electron Energy Loss Spectrometer for Fast, Low-Dose, and High Resolution Spectroscopic Imaging of Hard and Soft Materials
MRI:购买直接检测电子能量损失光谱仪,对硬质和软质材料进行快速、低剂量和高分辨率光谱成像
  • 批准号:
    2117903
  • 财政年份:
    2021
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
CAREER: Research and Education for a Solar Future: Fundamentals of Nanocrystal Photochemistry and Integration of Solar Energy Research into Physical Chemistry Curriculum
职业:太阳能未来的研究和教育:纳米晶体光化学基础知识以及太阳能研究与物理化学课程的整合
  • 批准号:
    1151151
  • 财政年份:
    2012
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Continuing Grant

相似海外基金

NSF Postdoctoral Fellowship in Biology: Rewriting the Code: Elucidating how early life adversity alters DNA to affect amygdala-related behavior
NSF 生物学博士后奖学金:重写代码:阐明早年逆境如何改变 DNA 从而影响杏仁核相关行为
  • 批准号:
    2208822
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Fellowship Award
Elucidating How the Contributions of Basic Scientific Research in Reproductive Biology Cultivate the Development of Medical Students' Perspectives on Life and Death
阐明生殖生物学基础科学研究的贡献如何培养医学生生死观的发展
  • 批准号:
    23K17579
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Elucidating How Brain Function and Structure Are Modulated in Diverse Social Contexts
阐明大脑功能和结构在不同社会背景下如何调节
  • 批准号:
    23KJ2180
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Elucidating how inflammation modulates metabolic signals in tumoricidal neutrophils in breast cancer.
阐明炎症如何调节乳腺癌中杀瘤中性粒细胞的代谢信号。
  • 批准号:
    495143
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Miscellaneous Programs
Elucidating how the PrimPol DNA damage tolerance pathway is regulated and where it operates in human cells
阐明 PrimPol DNA 损伤耐受途径的调节方式及其在人体细胞中的作用位置
  • 批准号:
    BB/X000834/1
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Research Grant
Elucidating how ATR promotes genome stability independent of the DNA damage response pathway
阐明 ATR 如何独立于 DNA 损伤反应途径促进基因组稳定性
  • 批准号:
    10711931
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
Elucidating how transcription factors MAFA and MAFB and mitochondrial activity control human β cell identity and function
阐明转录因子 MAFA 和 MAFB 以及线粒体活性如何控制人类细胞的身份和功能
  • 批准号:
    10660007
  • 财政年份:
    2023
  • 资助金额:
    $ 49.97万
  • 项目类别:
BRC-BIO: Elucidating how protein-nucleic acid interactions create site-specific integration of retrotransposable elements
BRC-BIO:阐明蛋白质-核酸相互作用如何产生逆转录转座元件的位点特异性整合
  • 批准号:
    2217924
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Standard Grant
Elucidating how inner mitochondrial membrane remodeling regulates mtDNA quality control
阐明线粒体内膜重塑如何调节 mtDNA 质量控制
  • 批准号:
    BB/W008467/1
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
    Research Grant
Elucidating how a USP9X-COP1 axis regulates RIT1 protein abundance and reveals druggable targets in lung adenocarcinoma
阐明 USP9X-COP1 轴如何调节 RIT1 蛋白丰度并揭示肺腺癌中的药物靶标
  • 批准号:
    10536485
  • 财政年份:
    2022
  • 资助金额:
    $ 49.97万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了