Elucidating how inner mitochondrial membrane remodeling regulates mtDNA quality control
阐明线粒体内膜重塑如何调节 mtDNA 质量控制
基本信息
- 批准号:BB/W008467/1
- 负责人:
- 金额:$ 45.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mitochondria are membrane bound organelle which not only produce the energy required for cellular functions but are also involved in numerous cellular pathways including cell death, calcium homeostasis, inflammation and immunity. Mitochondria are dynamic organelles that constantly adapt their shape depending on cellular requirements by two opposing events: fusion and fission. For example, mitochondrial division (fission), which represents the formation of two mitochondria from one entity, is crucial not only for mitochondrial DNA (mtDNA) transmission but also for organelle distribution and movement within the cell. On the other hand, mitochondrial fusion allows the efficient mix of contents of two mitochondria and therefore is considered as a safeguard mechanism that facilitates the complementation of damaged mitochondria. Proper mitochondrial dynamics are essential for cell viability and altered mitochondrial morphology contributes to the pathogenesis of multiple diseases. Thus, deciphering the molecular mechanisms by which mitochondria adapt their shape, and modulating mitochondrial morphology in pathological conditions are currently at the forefront of mitochondrial research. Mitochondria contain their own circular DNA (mtDNA), whose replication occurs independently of nuclear DNA replication and only encodes a small set of mitochondrial proteins. mtDNA is organized in compacted structures named nucleoids (around 1.4 mtDNA molecules per nucleoid on average), which are physically associated with the inner mitochondrial membrane (IMM). Therefore, understanding IMM dynamics events are essential to unveil the secrets underlying the self-autonomous regulation of the mitochondrial genome and to unravel the interplay between IMM remodeling and mtDNA levels, a mechanism ensuring a proper mtDNA quality control. Heteroplasmy is a condition where two different mitochondrial genetic backgrounds can be found in a single cell or tissue. Basal heteroplasmy levels, ~1-2% of mutant mtDNA, are found in all humans. However, when the number of copies of mutant mtDNA molecules reach a percentage around 50 to 80% (knows as biochemical threshold), mitochondrial dysfunction will take place leading to decrease energy production and the appearance of clinical manifestations including muscle weakness, movements disorders and hearing and vision defects. The biochemical threshold depends not only on the type of mutation but also on the tissues and cell type affected. Therefore, maintaining a low percentage of mutant mtDNA copies can be an adequate strategy to ameliorate the clinical symptomatology of patients affected by heteroplasmic mtDNA mutations. In this context, the overall aim of the project is to elucidate the molecular mechanisms underlying IMM conformational changes and to understand how these dynamic shape transitions directly regulate mtDNA content and distribution in both health and disease. To address these fundamental questions, we will (1) define the events governing IMM dynamics by studying a new mechanism controlling IMM compartmentalization, a process allowing the formation of different IMM structures inside one single mitochondrion. We will then (2) investigate how these IMM dynamics are required to isolate mtDNA-containing nucleoids that will be subsequently targeted for degradation. Finally, using different cellular models of heteroplasmy, we will (3) explore how these IMM dynamics could modulate the pools of mutant mtDNA and rescue the biochemical-associated defects. Together, this project will shed light on a new mechanism specifically dedicated to regulate mtDNA quality control. This will not only mark a significant advance in the fundamental understanding of mitochondrial physiology, but will also propose a new paradigm that could open new therapeutic strategies for the modulation of mtDNA distribution and levels in pathological conditions.
线粒体是膜结合的细胞器,其不仅产生细胞功能所需的能量,而且还参与许多细胞途径,包括细胞死亡、钙稳态、炎症和免疫。线粒体是动态的细胞器,通过两个相反的事件:融合和分裂,根据细胞的需要不断调整其形状。例如,线粒体分裂(裂变),代表从一个实体形成两个线粒体,不仅对线粒体DNA(mtDNA)传输至关重要,而且对细胞内的细胞器分布和运动也至关重要。另一方面,线粒体融合允许两个线粒体的内容物的有效混合,因此被认为是促进受损线粒体互补的保护机制。适当的线粒体动力学对于细胞活力是必不可少的,并且改变的线粒体形态有助于多种疾病的发病机制。因此,破译线粒体适应其形状的分子机制,以及在病理条件下调节线粒体形态是目前线粒体研究的最前沿。 线粒体含有它们自己的环状DNA(mtDNA),其复制独立于核DNA复制而发生,并且仅编码一小部分线粒体蛋白。mtDNA以紧凑的结构组织起来,称为类核(平均每个类核约1.4个mtDNA分子),它们与线粒体内膜(IMM)物理相关。因此,了解IMM动力学事件对于揭示线粒体基因组自我自主调节的秘密以及解开IMM重塑和mtDNA水平之间的相互作用至关重要,这是一种确保适当mtDNA质量控制的机制。异质性是在单个细胞或组织中可以发现两种不同线粒体遗传背景的情况。基础异质性水平,约1-2%的突变mtDNA,在所有人类中发现。然而,当突变mtDNA分子的拷贝数达到约50%至80%的百分比(称为生化阈值)时,线粒体功能障碍将发生,导致能量产生减少和临床表现的出现,包括肌无力,运动障碍和听力和视力缺陷。生化阈值不仅取决于突变的类型,还取决于受影响的组织和细胞类型。因此,维持低百分比的突变mtDNA拷贝可能是改善异质性mtDNA突变患者临床表现的一种适当策略。 在这种情况下,该项目的总体目标是阐明IMM构象变化的分子机制,并了解这些动态形状转换如何直接调节健康和疾病中的mtDNA含量和分布。为了解决这些基本问题,我们将(1)通过研究一种控制IMM划分的新机制来定义控制IMM动力学的事件,这是一种允许在一个单一的子内形成不同IMM结构的过程。然后,我们将(2)研究如何需要这些IMM动力学来分离随后将被靶向降解的含mtDNA的类核苷酸。最后,我们将使用异质性的不同细胞模型,(3)探索这些IMM动力学如何调节突变mtDNA库并拯救生化相关缺陷。总之,该项目将揭示一种专门用于调节mtDNA质量控制的新机制。这不仅标志着对线粒体生理学基本理解的重大进展,而且还将提出一种新的范式,可以为病理条件下mtDNA分布和水平的调节开辟新的治疗策略。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
mtFociCounter for automated single-cell mitochondrial nucleoid quantification and reproducible foci analysis.
- DOI:10.1093/nar/gkad864
- 发表时间:2023-11-27
- 期刊:
- 影响因子:14.9
- 作者:
- 通讯作者:
mtFociCounter for automated single-cell mitochondrial nucleoid quantification and reproducible foci analysis
mtFociCounter 用于自动单细胞线粒体核仁定量和可重复的焦点分析
- DOI:10.1101/2022.08.13.503663
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Rey T
- 通讯作者:Rey T
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Julien Prudent其他文献
Molecular mechanisms of mitochondrial dynamics
线粒体动力学的分子机制
- DOI:
10.1038/s41580-024-00785-1 - 发表时间:
2024-10-17 - 期刊:
- 影响因子:90.200
- 作者:
Luis-Carlos Tábara;Mayuko Segawa;Julien Prudent - 通讯作者:
Julien Prudent
MitoPerSulf: Mitochondrial-Targeted Protection Against Cardiac Ischemia-Reperfusion via Rapid Persulfide and H2S Release
线粒体过硫化物:通过快速释放过硫化物和硫化氢实现针对心脏缺血再灌注的线粒体靶向保护
- DOI:
10.1016/j.freeradbiomed.2023.10.301 - 发表时间:
2023-11-01 - 期刊:
- 影响因子:8.200
- 作者:
Jan Miljkovic Lj;Nils Burger;M. Justyna Gawel;F. John Mulvey;A.I. Abigail Norman;Jordan Morris;Takanori Nishimura;Yoshiyuki Tsujihata;Angela Logan;Olga Sauchanka;T. Stuart Caldwell;A. Tracy Prime;Georgina Bates;Dunja Aksentijevic;Hiran Prag;Julien Prudent;M. Andrew James;Thomas Krieg;Richard Hartley;Michael Murphy - 通讯作者:
Michael Murphy
Pro-inflammatory macrophages produce mitochondria-derived superoxide by reverse electron transport at complex I that regulates IL-1β release during NLRP3 inflammasome activation
促炎性巨噬细胞通过复合物 I 中的反向电子传递产生线粒体衍生的超氧化物,其在 NLRP3 炎性小体激活期间调节 IL-1β的释放。
- DOI:
10.1038/s42255-025-01224-x - 发表时间:
2025-02-19 - 期刊:
- 影响因子:20.800
- 作者:
Alva M. Casey;Dylan G. Ryan;Hiran A. Prag;Suvagata Roy Chowdhury;Eloïse Marques;Keira Turner;Anja V. Gruszczyk;Ming Yang;Dane M. Wolf;Jan Lj. Miljkovic;Joyce Valadares;Patrick F. Chinnery;Richard C. Hartley;Christian Frezza;Julien Prudent;Michael P. Murphy - 通讯作者:
Michael P. Murphy
Elucidating the mechanism of mitochondrial superoxide production in pro-inflammatory macrophages
阐明促炎性巨噬细胞中线粒体超氧化物产生的机制
- DOI:
10.1016/j.freeradbiomed.2025.05.202 - 发表时间:
2025-06-01 - 期刊:
- 影响因子:8.200
- 作者:
Alva M. Casey;Dylan G. Ryan;Hiran A. Prag;Suvagata Roy Chowdhury;Eloïse Marques;Keira Turner;Anja V. Gruszczyk;Ming Yang;Dane M. Wolf;Jan Lj. Miljkovic;Joyce Valadares;Patrick F. Chinnery;Richard C. Hartley;Christian Frezza;Julien Prudent;Michael P. Murphy - 通讯作者:
Michael P. Murphy
Julien Prudent的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Julien Prudent', 18)}}的其他基金
Mitochondrial cell biology: Understanding the molecular mechanisms and functions of mitochondrial dynamics and membrane contact sites
线粒体细胞生物学:了解线粒体动力学和膜接触位点的分子机制和功能
- 批准号:
MC_UU_00028/5 - 财政年份:2022
- 资助金额:
$ 45.41万 - 项目类别:
Intramural
Investigation of the function of the ER/mitochondria contact sites in cell physiology and disease
内质网/线粒体接触位点在细胞生理学和疾病中的功能研究
- 批准号:
MC_UU_00015/7 - 财政年份:2017
- 资助金额:
$ 45.41万 - 项目类别:
Intramural
相似海外基金
Probing how hair bundle mechanical properties shape the mechanotransducer receptor current
探讨发束机械特性如何塑造机械传感器受体电流
- 批准号:
10778103 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Revealing how cytoskeletal dynamics form the early mammalian embryo
揭示细胞骨架动力学如何形成早期哺乳动物胚胎
- 批准号:
10624808 - 财政年份:2021
- 资助金额:
$ 45.41万 - 项目类别:
Revealing how cytoskeletal dynamics form the early mammalian embryo
揭示细胞骨架动力学如何形成早期哺乳动物胚胎
- 批准号:
10378489 - 财政年份:2021
- 资助金额:
$ 45.41万 - 项目类别:
Revealing how cytoskeletal dynamics form the early mammalian embryo
揭示细胞骨架动力学如何形成早期哺乳动物胚胎
- 批准号:
10117399 - 财政年份:2021
- 资助金额:
$ 45.41万 - 项目类别:
How Does Inner Voice Influence L2-English Reading Processes?
内心声音如何影响二语英语阅读过程?
- 批准号:
20K13132 - 财政年份:2020
- 资助金额:
$ 45.41万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
SCC-Planning: How Can Investments In Smart Cities Technologies Improve The Lives Of Low-Income, Inner-City Residents
SCC 规划:智慧城市技术投资如何改善低收入内城区居民的生活
- 批准号:
1737495 - 财政年份:2017
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant
How Do Muller Glia Control Circuit-Specific Retinal Synaptogenesis?
穆勒胶质细胞如何控制特定电路的视网膜突触发生?
- 批准号:
9328930 - 财政年份:2017
- 资助金额:
$ 45.41万 - 项目类别:
Workshops: Finding your inner modeler: how computational biology can advance your research and how to get started; June/July, 2017-2019; Chicago, Illinois
研讨会:寻找你的内在建模者:计算生物学如何推进你的研究以及如何开始;
- 批准号:
1649160 - 财政年份:2016
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant
How Does Aqueous Humor Cross the Inner Wall of Schlemm's Canal?
房水如何穿过施累姆氏管内壁?
- 批准号:
7296961 - 财政年份:2007
- 资助金额:
$ 45.41万 - 项目类别:
How Does Aqueous Humor Cross the Inner Wall of Schlemm's Canal?
房水如何穿过施累姆氏管内壁?
- 批准号:
7472427 - 财政年份:2007
- 资助金额:
$ 45.41万 - 项目类别: