Collaborative Research: SCH: Machine Learning Driven User Interfaces for Information Gathering and Synthesis from Medical Records

合作研究:SCH:机器学习驱动的用户界面,用于从医疗记录中收集和合成信息

基本信息

  • 批准号:
    2205320
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Clinicians have to search through a patient’s past medical records to contextualize the patient’s condition and reach a personalized diagnosis and treatment plan. However, user interfaces in healthcare are unwieldy to navigate and are largely a digitization of static paper forms from legacy clinical workflows, a paradigm that has contributed to poor usability and clinician burnout. This project brings together experts in machine learning and human-computer interaction to develop a novel dynamic contextual user interface that transforms the medical note-taking interface from a simple recording device to a tool that can help clinicians quickly find and synthesize information. The project’s novelties are in advancing the foundations of human-AI interaction and in advancing the state-of-the-art in artificial intelligence for health care with novel methods that autonomously retrieve, summarize, and surface relevant information for clinicians, at the right time. The project’s impacts are in an area of national priority, health IT, as it aims to modernize electronic health records. The resulting system will help prevent subtle findings from being overlooked, patients from being misdiagnosed, and critical interventions from being missed, ultimately resulting in a decrease in morbidity, mortality, and overall cost of health care. It will additionally decrease documentation burden and mitigate physician burnout. Prior attempts at developing contextual displays of patient information were manual, labor-intensive processes that relied on domain expertise and were neither scalable, maintainable, nor customized to individual users. Automating contextual displays is challenging because what information is relevant highly depends on the user, patient, and specific clinical context. Traditional machine learning approaches are infeasible because of the lack of labeled training data. This project develops new user interfaces that enable the large-scale collection of implicit usage-based training data as part of routine user workflows. Specifically, this project develops a novel information foraging interface, the ‘semantic clipboard’, which clinicians will use while reading patients’ past medical records and while writing notes. Using the data collected through this new interface, the investigators will develop new machine learning methodologies to predict the relevant pieces of information that should appear in these contextual displays, customized to the clinical scenario as well as the user. Through this project and the investigators’ academic teaching, a new generation of cross-disciplinary researchers will be educated: graduate students who understand the fundamental challenges of human computer interaction, machine learning, and clinical medicine, and medical fellows who understand machine learning and the subtleties of deploying machine learning in health care.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
临床医生必须搜索患者过去的医疗记录,以了解患者的病情,并制定个性化的诊断和治疗计划。然而,医疗保健领域的用户界面难以操作,并且主要是来自传统临床工作流程的静态纸质表单的数字化,这种模式导致可用性差和临床医生倦怠。该项目汇集了机器学习和人机交互方面的专家,开发了一种新颖的动态上下文用户界面,将医疗笔记界面从简单的记录设备转变为可以帮助临床医生快速查找和综合信息的工具。该项目的新颖之处在于推进人类与人工智能交互的基础,并通过新颖的方法推进医疗保健领域人工智能的最新发展,这些方法可以在适当的时候为临床医生自主检索、总结和显示相关信息。该项目的影响是在国家优先考虑的卫生信息技术领域,因为它旨在实现电子健康记录的现代化。由此产生的系统将有助于防止细微的发现被忽视,患者被误诊,关键的干预措施被遗漏,最终导致发病率、死亡率和卫生保健总成本的降低。它还将减少文件负担,减轻医生的职业倦怠。以前开发患者信息上下文显示的尝试是手动的、劳动密集型的过程,依赖于领域的专业知识,既不可扩展、可维护,也不能为个人用户定制。自动化上下文显示具有挑战性,因为相关信息高度依赖于用户、患者和特定的临床上下文。由于缺乏标记的训练数据,传统的机器学习方法是不可行的。该项目开发了新的用户界面,使隐式基于使用的训练数据的大规模收集成为日常用户工作流程的一部分。具体来说,这个项目开发了一种新的信息采集界面,即“语义剪贴板”,临床医生在阅读病人过去的医疗记录和写笔记时将使用它。利用通过这个新界面收集的数据,研究人员将开发新的机器学习方法来预测应该出现在这些上下文显示中的相关信息,并根据临床场景和用户进行定制。通过这个项目和研究人员的学术教学,将培养新一代的跨学科研究人员:了解人机交互、机器学习和临床医学基本挑战的研究生,以及了解机器学习和在医疗保健中部署机器学习的微妙之处的医学研究员。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Conceptualizing Machine Learning for Dynamic Information Retrieval of Electronic Health Record Notes
  • DOI:
    10.48550/arxiv.2308.08494
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sharon Jiang;Zejiang Shen;Monica Agrawal;Barbara Lam;N. Kurtzman;S. Horng;David R Karger;D. Sontag
  • 通讯作者:
    Sharon Jiang;Zejiang Shen;Monica Agrawal;Barbara Lam;N. Kurtzman;S. Horng;David R Karger;D. Sontag
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Sontag其他文献

Evaluating Physician-AI Interaction for Cancer Management: Paving the Path towards Precision Oncology
评估医生与人工智能在癌症管理中的互动:为精准肿瘤学铺平道路
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zeshan Hussain;Barbara D. Lam;Fernando A. Acosta;I. Riaz;Maia L. Jacobs;Andrew J. Yee;David Sontag
  • 通讯作者:
    David Sontag
Impact of Large Language Model Assistance on Patients Reading Clinical Notes: A Mixed-Methods Study
大语言模型辅助对患者阅读临床笔记的影响:一项混合方法研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niklas Mannhardt;Elizabeth Bondi;Barbara Lam;Chloe O'Connell;M. Asiedu;Hussein Mozannar;Monica Agrawal;Alejandro Buendia;Tatiana Urman;I. Riaz;Catherine E. Ricciardi;Marzyeh Ghassemi;David Sontag
  • 通讯作者:
    David Sontag
Deeper evaluation of a single-cell foundation model
对单细胞基础模型的更深入评估
  • DOI:
    10.1038/s42256-024-00949-w
  • 发表时间:
    2024-12-12
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Rebecca Boiarsky;Nalini M. Singh;Alejandro Buendia;Ava P. Amini;Gad Getz;David Sontag
  • 通讯作者:
    David Sontag
Evaluating Physician-AI Interaction for Multiple Myeloma Management: Paving the Path Towards Precision Oncology
  • DOI:
    10.1182/blood-2023-182421
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Barbara D Lam;Zeshan Hussain;Fernando A Acosta-Perez;Irbaz Bin Riaz;Maia Jacobs;Andrew J. Yee;David Sontag
  • 通讯作者:
    David Sontag
Assessing Decision-Making Capacity in Patients with Acquired Brain Injury: A Toolkit of Ethical Guidelines
  • DOI:
    10.1016/j.apmr.2022.01.028
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ally Sterling;Joshua Abrams;David Sontag;David Zuckerman;Stephen O'Neill;Rebecca Brendel;Joseph Giacino
  • 通讯作者:
    Joseph Giacino

David Sontag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Sontag', 18)}}的其他基金

CAREER: Exact Algorithms for Learning Latent Structure
职业:学习潜在结构的精确算法
  • 批准号:
    1745125
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Algorithms for Probabilistic Inference in the Real World
AitF:协作研究:现实世界中的概率推理算法
  • 批准号:
    1723344
  • 财政年份:
    2017
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Algorithms for Probabilistic Inference in the Real World
AitF:协作研究:现实世界中的概率推理算法
  • 批准号:
    1637544
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
NIPS 2015 Workshop on Machine Learning For Healthcare
NIPS 2015 医疗保健机器学习研讨会
  • 批准号:
    1561462
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Exact Algorithms for Learning Latent Structure
职业:学习潜在结构的精确算法
  • 批准号:
    1350965
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306660
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
  • 批准号:
    2306708
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306790
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
  • 批准号:
    2306659
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
  • 批准号:
    2306740
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Psychophysiological sensing to enhance mindfulness-based interventions for self-regulation of opioid cravings
合作研究:SCH:心理生理学传感,以增强基于正念的干预措施,以自我调节阿片类药物的渴望
  • 批准号:
    2320678
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
  • 批准号:
    2306738
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
  • 批准号:
    2306792
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
  • 批准号:
    2306739
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
  • 批准号:
    2306709
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了