CAREER: Exact Algorithms for Learning Latent Structure

职业:学习潜在结构的精确算法

基本信息

  • 批准号:
    1745125
  • 负责人:
  • 金额:
    $ 35.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-01-01 至 2020-06-30
  • 项目状态:
    已结题

项目摘要

One of the fundamental tasks in science is to infer the causal relationships between variables from data, and to discover hidden phenomena that may affect their outcome. We can attempt to automate this scientific process by searching over probabilistic models of how the observed data might be influenced by unobserved (latent) factors or variables. Machine learning of such models provides insight into the underlying domain and a means of predicting the latent factors. However, it is challenging to search over the exponentially many models, and existing algorithms are unable to scale to large amounts of data.The goal of this CAREER award will provide novel algorithms to circumvent this computational intractability. Based on a classical idea in statistics called the method-of-moments, the new algorithms will be applied in bioinformatics to discover regulatory modules from disease expression profiles, and in health care to predict a patient's clinical state using data from their electronic medical record. A key component of the project is to involve high school students from disadvantaged backgrounds in the research to inspire them to pursue STEM careers.The project advances machine learning by introducing several new techniques for unsupervised and semi-supervised learning of Bayesian networks. The project overcomes the computational challenges associated with maximum-likelihood estimation by developing new method-of-moment based algorithms for learning latent variable models, focusing on settings where inference itself may be intractable. This includes Bayesian networks of discrete variables where a top layer consists of latent factors and a bottom layer consists of the observed data, a form of discrete factor analysis. The proposed algorithms run in polynomial time and are guaranteed to learn a close approximation to the true model.The techniques developed as part of this project have the potential to be transformative in the social and natural sciences by enabling the efficient and accurate discovery of latent variables from discrete data. Furthermore, in collaboration with emergency department clinicians, the new algorithms will be applied to learn models relating diseases to symptoms from noisy and incomplete data that is routinely collected as part of electronic medical records. This will advance the field of machine learning in health care by providing algorithms that generalize between institutions without the need for a large amount of labeled training data.The insights about exploratory data analysis developed as part of this project will be integrated into innovative curriculum in data science, both as part of an undergraduate class and new Master's classes. The project will bring students from nearby high schools to NYU throughout the academic year and during the summer to learn about machine learning through participation in the proposed research, having them use the unsupervised learning algorithms to discover new medical insights. The PI will also develop and deliver tutorials on machine learning to clinicians and the health care industry.
科学的基本任务之一是从数据中推断变量之间的因果关系,并发现可能影响其结果的隐藏现象。我们可以尝试通过搜索观察到的数据如何受到未观察到的(潜在的)因素或变量影响的概率模型来自动化这一科学过程。对这些模型的机器学习提供了对潜在领域的深入了解和预测潜在因素的方法。然而,它是具有挑战性的搜索指数许多模型,和现有的算法无法扩展到大量的数据。这个CAREER奖的目标将提供新的算法,以规避这种计算上的困难。基于统计学中的经典思想,即矩量法,新算法将应用于生物信息学,从疾病表达谱中发现调控模块,并在医疗保健中使用电子病历中的数据预测患者的临床状态。该项目的一个关键组成部分是让来自弱势背景的高中生参与研究,激励他们追求STEM职业。该项目通过引入几种用于贝叶斯网络无监督和半监督学习的新技术来推进机器学习。该项目克服了与最大似然估计相关的计算挑战,通过开发新的基于矩量法的算法来学习潜变量模型,重点关注推理本身可能难以处理的设置。这包括离散变量的贝叶斯网络,其中顶层由潜在因素组成,底层由观察到的数据组成,这是离散因素分析的一种形式。所提出的算法在多项式时间内运行,并保证学习接近真实模型。作为该项目的一部分开发的技术有可能在社会和自然科学中进行变革,使从离散数据中高效准确地发现潜在变量。此外,在与急诊科临床医生的合作中,新算法将被应用于从作为电子病历的一部分定期收集的嘈杂和不完整数据中学习疾病与症状相关的模型。这将通过提供无需大量标记训练数据即可在机构之间推广的算法,推动医疗保健领域的机器学习。作为该项目的一部分,开发的探索性数据分析见解将被整合到数据科学的创新课程中,作为本科课程和新硕士课程的一部分。该项目将在整个学年和夏季将附近高中的学生带到纽约大学,通过参与拟议的研究来学习机器学习,让他们使用无监督学习算法来发现新的医学见解。PI还将为临床医生和医疗保健行业开发和提供机器学习教程。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

David Sontag其他文献

Evaluating Physician-AI Interaction for Cancer Management: Paving the Path towards Precision Oncology
评估医生与人工智能在癌症管理中的互动:为精准肿瘤学铺平道路
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zeshan Hussain;Barbara D. Lam;Fernando A. Acosta;I. Riaz;Maia L. Jacobs;Andrew J. Yee;David Sontag
  • 通讯作者:
    David Sontag
Impact of Large Language Model Assistance on Patients Reading Clinical Notes: A Mixed-Methods Study
大语言模型辅助对患者阅读临床笔记的影响:一项混合方法研究
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Niklas Mannhardt;Elizabeth Bondi;Barbara Lam;Chloe O'Connell;M. Asiedu;Hussein Mozannar;Monica Agrawal;Alejandro Buendia;Tatiana Urman;I. Riaz;Catherine E. Ricciardi;Marzyeh Ghassemi;David Sontag
  • 通讯作者:
    David Sontag
Deeper evaluation of a single-cell foundation model
对单细胞基础模型的更深入评估
  • DOI:
    10.1038/s42256-024-00949-w
  • 发表时间:
    2024-12-12
  • 期刊:
  • 影响因子:
    23.900
  • 作者:
    Rebecca Boiarsky;Nalini M. Singh;Alejandro Buendia;Ava P. Amini;Gad Getz;David Sontag
  • 通讯作者:
    David Sontag
Evaluating Physician-AI Interaction for Multiple Myeloma Management: Paving the Path Towards Precision Oncology
  • DOI:
    10.1182/blood-2023-182421
  • 发表时间:
    2023-11-02
  • 期刊:
  • 影响因子:
  • 作者:
    Barbara D Lam;Zeshan Hussain;Fernando A Acosta-Perez;Irbaz Bin Riaz;Maia Jacobs;Andrew J. Yee;David Sontag
  • 通讯作者:
    David Sontag
Assessing Decision-Making Capacity in Patients with Acquired Brain Injury: A Toolkit of Ethical Guidelines
  • DOI:
    10.1016/j.apmr.2022.01.028
  • 发表时间:
    2022-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Ally Sterling;Joshua Abrams;David Sontag;David Zuckerman;Stephen O'Neill;Rebecca Brendel;Joseph Giacino
  • 通讯作者:
    Joseph Giacino

David Sontag的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('David Sontag', 18)}}的其他基金

Collaborative Research: SCH: Machine Learning Driven User Interfaces for Information Gathering and Synthesis from Medical Records
合作研究:SCH:机器学习驱动的用户界面,用于从医疗记录中收集和合成信息
  • 批准号:
    2205320
  • 财政年份:
    2022
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Algorithms for Probabilistic Inference in the Real World
AitF:协作研究:现实世界中的概率推理算法
  • 批准号:
    1723344
  • 财政年份:
    2017
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Standard Grant
AitF: Collaborative Research: Algorithms for Probabilistic Inference in the Real World
AitF:协作研究:现实世界中的概率推理算法
  • 批准号:
    1637544
  • 财政年份:
    2016
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Standard Grant
NIPS 2015 Workshop on Machine Learning For Healthcare
NIPS 2015 医疗保健机器学习研讨会
  • 批准号:
    1561462
  • 财政年份:
    2015
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Standard Grant
CAREER: Exact Algorithms for Learning Latent Structure
职业:学习潜在结构的精确算法
  • 批准号:
    1350965
  • 财政年份:
    2014
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Standard Grant

相似国自然基金

发展基于Exact Muffin-Tin轨道的第一性原理量子输运方法
  • 批准号:
    11874265
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Exact and heuristic algorithms for vehicle routing
用于车辆路线的精确启发式算法
  • 批准号:
    RGPIN-2017-05683
  • 财政年份:
    2022
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for exact linear algebra
精确线性代数算法
  • 批准号:
    RGPIN-2018-05256
  • 财政年份:
    2022
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: Exact Optimal and Data-Adaptive Algorithms and Tools for Differential Privacy
职业:用于差异隐私的精确最优和数据自适应算法和工具
  • 批准号:
    2048091
  • 财政年份:
    2021
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Continuing Grant
Exact and heuristic algorithms for vehicle routing
用于车辆路线的精确启发式算法
  • 批准号:
    RGPIN-2017-05683
  • 财政年份:
    2021
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for exact linear algebra
精确线性代数算法
  • 批准号:
    RGPIN-2018-05256
  • 财政年份:
    2021
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Discovery Grants Program - Individual
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10329938
  • 财政年份:
    2021
  • 资助金额:
    $ 35.08万
  • 项目类别:
Adaptive randomized designs for cancer clinical trials by using integer algorithms and exact Monte Carlo methods
使用整数算法和精确蒙特卡罗方法进行癌症临床试验的自适应随机设计
  • 批准号:
    10405326
  • 财政年份:
    2021
  • 资助金额:
    $ 35.08万
  • 项目类别:
Exact and heuristic algorithms for vehicle routing
用于车辆路线的精确启发式算法
  • 批准号:
    RGPIN-2017-05683
  • 财政年份:
    2020
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Discovery Grants Program - Individual
Algorithms for exact linear algebra
精确线性代数算法
  • 批准号:
    RGPIN-2018-05256
  • 财政年份:
    2020
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Discovery Grants Program - Individual
Exact and heuristic algorithms for vehicle routing
用于车辆路线的精确启发式算法
  • 批准号:
    RGPIN-2017-05683
  • 财政年份:
    2019
  • 资助金额:
    $ 35.08万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了