Many Particles' Systems: Theory and Applications
多粒子系统:理论与应用
基本信息
- 批准号:1312142
- 负责人:
- 金额:$ 34.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2017-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposal investigates, theoretically and numerically, a wide spectrum of particle's systems found in various applications. The dimension of those systems is proportional to the number of particles involved which can be quite large, up to 10^{25} in some settings. This makes them too complex to analyze and too costly to solve numerically. However a key feature of those large systems is their multiscale nature: It makes the dynamics extremely complex at the microscopic level of an individual particle. But it can also lead to a drastic reduction in the complexity of the system by approximating it at the mesoscopic or macroscopic level with PDE's in lower dimensions; the main difficulty in that case is the study and control of the correlations between particles. A classical example is the usual mean field limit problem for kinetic equations in statistical physics for which the investigator will develop novel techniques in order to handle singular potentials. New extensions will be investigated as well in order to push beyond the classical framework, including bacterial suspensions, mean field games models and applications to social sciences (consensus formation...). The bacterial suspensions under study have a relatively high number density with hence non negligible correlations between the particles or bacteria. The investigator and collaborators introduce a new numerical scheme to calculate those correlations. In the case of mean field games, in addition of "classical" interactions between the particles or agents, a control on the dynamics is optimized by a central agent. The usual techniques, propagation of chaos on the joint law for instance, are no more applicable and we develop a new approach, based on the minimization of N and 1 agent energies. Systems with a very large number of particles are ubiquitous in science and engineering. Indeed depending on the context and the model, the term "particle" may represent very different objects; in the scope of this project, a particle could for instance be as "simple" as an electron or ion (particles in a plasma), or more complex like a bacteria, an economical or social agent or even a very large structure like a galaxy (dynamics of clusters in astrophysics). Reducing the complexity of such large systems, for instance by approximating them by Partial Differential Equations, is a critical step to be able to use them (numerical simulations...). The project will contribute to the understanding of this phenomenon for a few important applications: the classical framework of statistical physics, suspensions of bacteria with critical density, multi-agent systems in economy and consensus formation. The project also has a direct impact on the education and future careers of graduate students and will also involve undergraduate students.
该提案从理论上和数值上研究了各种应用中发现的广泛的粒子系统。这些系统的尺寸与所涉及的粒子数量成比例,这些粒子数量可以相当大,在某些设置中高达10^{25}。这使得它们太复杂而无法分析,并且数值求解成本太高。然而,这些大型系统的一个关键特征是它们的多尺度性质:它使单个粒子的微观动力学极其复杂。但它也可以导致系统的复杂性急剧降低,通过在介观或宏观水平上用较低维度的PDE近似它;在这种情况下,主要困难是研究和控制粒子之间的相关性。一个经典的例子是通常的平均场极限问题的动力学方程在统计物理学的研究人员将开发新的技术,以处理奇异的潜力。新的扩展也将被调查,以推动超越经典的框架,包括细菌悬浮液,平均场博弈模型和社会科学的应用(共识形成.)。所研究的细菌悬浮液具有相对高的数密度,因此颗粒或细菌之间的相关性不可忽略。研究人员和合作者引入了一种新的数值方案来计算这些相关性。在平均场博弈的情况下,除了粒子或代理之间的“经典”相互作用之外,对动态的控制由中央代理优化。通常的技术,传播的混沌的联合法律,例如,不再适用,我们开发了一种新的方法,基于最小化的N和1代理的能量。具有大量粒子的系统在科学和工程中无处不在。事实上,根据上下文和模型,术语“粒子”可能代表非常不同的对象;在本项目的范围内,粒子可以像电子或离子(等离子体中的粒子)一样“简单”,或者更复杂,如细菌,经济或社会代理,甚至是像星系这样的非常大的结构(天体物理学中的集群动力学)。降低这种大型系统的复杂性,例如通过偏微分方程近似它们,是能够使用它们的关键步骤(数值模拟.)。 该项目将有助于理解这一现象的一些重要应用:统计物理学的经典框架,临界密度的细菌悬浮液,经济和共识形成中的多代理系统。该项目还对研究生的教育和未来职业产生直接影响,也将涉及本科生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Pierre-Emmanuel Jabin其他文献
Time-asymptotic convergence rates towards discrete steady states of nonlocal selection-mutation model
非局部选择变异模型离散稳态的时间渐近收敛率
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:3.5
- 作者:
Wenli Cai;Pierre-Emmanuel Jabin;Hailiang Liu - 通讯作者:
Hailiang Liu
Mean-field derivation of Landau-like equations
朗道型方程的平均场推导
- DOI:
10.1016/j.aml.2024.109195 - 发表时间:
2024-12-01 - 期刊:
- 影响因子:2.800
- 作者:
José Antonio Carrillo;Shuchen Guo;Pierre-Emmanuel Jabin - 通讯作者:
Pierre-Emmanuel Jabin
Quantitative estimates of propagation of chaos for stochastic systems with $$W^{-1,\infty }$$ kernels
- DOI:
10.1007/s00222-018-0808-y - 发表时间:
2018-07-06 - 期刊:
- 影响因子:3.600
- 作者:
Pierre-Emmanuel Jabin;Zhenfu Wang - 通讯作者:
Zhenfu Wang
Pierre-Emmanuel Jabin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Pierre-Emmanuel Jabin', 18)}}的其他基金
Charting a New Paradigm for Large Non-Exchangeable Multi-Agent and Many-Particle Systems
为大型不可交换多代理和多粒子系统绘制新范式
- 批准号:
2205694 - 财政年份:2022
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
- 批准号:
2219397 - 财政年份:2022
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
Quantifying Chaos, Correlations, and Oscillations in Multi-Agent Systems and Advection Equations
量化多智能体系统和平流方程中的混沌、相关性和振荡
- 批准号:
2049020 - 财政年份:2020
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
Quantifying Chaos, Correlations, and Oscillations in Multi-Agent Systems and Advection Equations
量化多智能体系统和平流方程中的混沌、相关性和振荡
- 批准号:
1908739 - 财政年份:2019
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
A novel paradigm for nonlinear convection models and large systems of particles
非线性对流模型和大型粒子系统的新范例
- 批准号:
1614537 - 财政年份:2016
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
相似海外基金
From Particles to Precipitation: Toward a Deeper Understanding of Cloud Systems with the Super-Droplet Method
从粒子到沉淀:利用超级水滴方法更深入地了解云系统
- 批准号:
23H00149 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
NSF-BSF: Dynamics of flowing particles in soft confined systems
NSF-BSF:软约束系统中流动粒子的动力学
- 批准号:
2328628 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
Effective Equations for Large Systems of Interacting Particles or Waves
相互作用的粒子或波的大型系统的有效方程
- 批准号:
2418020 - 财政年份:2023
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
Effective Equations for Large Systems of Interacting Particles or Waves
相互作用的粒子或波的大型系统的有效方程
- 批准号:
2206618 - 财政年份:2022
- 资助金额:
$ 34.13万 - 项目类别:
Standard Grant
Development of Fluidized Bed Heat Storage Unit with PCM particles that can rapidly store and release heart and Biomass Power Generation Systems
开发具有PCM颗粒的流化床蓄热装置,可快速存储和释放心脏和生物质发电系统
- 批准号:
22K04815 - 财政年份:2022
- 资助金额:
$ 34.13万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-optimising reactor systems combined with computational strategies to understand and control inorganic particles.
自优化反应器系统与计算策略相结合,以理解和控制无机颗粒。
- 批准号:
2597357 - 财政年份:2021
- 资助金额:
$ 34.13万 - 项目类别:
Studentship
Multiphase flows of particles in thin film systems
薄膜系统中颗粒的多相流
- 批准号:
RGPIN-2017-04101 - 财政年份:2021
- 资助金额:
$ 34.13万 - 项目类别:
Discovery Grants Program - Individual
Multiphase flows of particles in thin film systems
薄膜系统中颗粒的多相流
- 批准号:
RGPIN-2017-04101 - 财政年份:2020
- 资助金额:
$ 34.13万 - 项目类别:
Discovery Grants Program - Individual
Multiphase flows of particles in thin film systems
薄膜系统中颗粒的多相流
- 批准号:
RGPIN-2017-04101 - 财政年份:2019
- 资助金额:
$ 34.13万 - 项目类别:
Discovery Grants Program - Individual
Degradation and behaviour of plastics and microplastic particles in technical systems of water and waste management (C05+)
水和废物管理技术系统中塑料和微塑料颗粒的降解和行为(C05)
- 批准号:
419410792 - 财政年份:2019
- 资助金额:
$ 34.13万 - 项目类别:
Collaborative Research Centres