A novel paradigm for nonlinear convection models and large systems of particles

非线性对流模型和大型粒子系统的新范例

基本信息

项目摘要

JabinDMS-1614537 Convection or transport mechanisms are a critical feature of several phenomena in physics and the biosciences. This project focuses on such mechanisms in compressible fluid mechanics and systems of many "particles." Compressible fluid mechanics includes a large set of models in very diverse settings: geophysical fluids with gravity in large scale fluids (Earth atmosphere), biological fluids (such as swimming bacteria), or "exotic" examples such as solar events or photon radiation. Systems of particles typically involve a very large number of coupled equations, one for each particle. Particles can here represent many different objects: In physics they can represent ions and electrons in plasmas, or molecules in a fluid, or even galaxies in some cosmological models; in the biosciences particles typically model micro-organisms (cells or bacteria); in economics or social sciences, particles are individual "agents." Instabilities can develop in all those systems and may manifest as oscillations in the mass density of the fluid or as collisions (or near collisions) between particles. A better understanding of such behavior can have important consequences. For example, insights on the swarming motility of micro-organisms would help the development of new biotechnologies. The main challenge to reduce the complexity of such systems is to understand how, and how quickly or slowly, the convection or transport (of mass in the fluid or of the particles) can amplify such oscillations. Graduate students are included in the work of the project. The project offers a new mathematical framework to study instabilities in many-particles systems and nonlinear convection equations. It unifies the methods to control collisions between particles, required by singular forces, and the ones to propagate regularity in convection equations, required to limit oscillations in nonlinear terms. The new method relies on a direct control of the regularity of the solution through a doubling of variables and requires delicate and explicit commutator estimates. This natural interplay between apparently very different sets of problems leads to new insights and breaks some of the barriers to more realistic models: Systems of interacting particles with physically realistic and unbounded forces or random collisions in velocity, leading to degenerate diffusion; models of fluid mechanics with thermodynamically unstable state laws or anisotropic terms. Graduate students are included in the work of the project.
JabinDMS-1614537对流或传输机制是物理学和生物科学中几个现象的关键特征。这个项目的重点是可压缩流体力学和许多“粒子”系统中的这种机制。可压缩流体力学包括在非常不同的环境中的一大组模型:大尺度流体(地球大气)中具有重力的地球物理流体、生物流体(如游动的细菌)或诸如太阳事件或光子辐射的“奇异”例子。粒子系统通常涉及大量的耦合方程,每个粒子对应一个方程。在这里,粒子可以代表许多不同的物体:在物理学中,它们可以代表等离子体中的离子和电子,或者流体中的分子,甚至在一些宇宙模型中,甚至可以代表星系;在生物科学中,粒子通常代表微生物(细胞或细菌);在经济学或社会科学中,粒子是单独的“代理人”。不稳定性可以在所有这些系统中发展,并可能表现为流体质量密度的振荡或粒子之间的碰撞(或接近碰撞)。更好地理解这种行为可能会产生重要的后果。例如,对微生物成群运动的洞察将有助于新生物技术的发展。降低这类系统的复杂性的主要挑战是了解对流或输送(流体或颗粒中的质量)如何以及以多快或多慢的速度放大这种振荡。研究生被包括在该项目的工作中。该项目为研究多粒子系统和非线性对流方程中的不稳定性提供了一个新的数学框架。它统一了奇异力所要求的控制粒子间碰撞的方法,以及限制非线性项振荡所需的在对流方程中传播正则性的方法。新方法依赖于通过变量加倍直接控制解的正则性,并且需要精确而明确的换位器估计。这种明显截然不同的问题之间的自然相互作用带来了新的见解,并打破了更现实模型的一些障碍:具有物理上真实的无界作用力的相互作用粒子系统,或者速度上的随机碰撞,导致简并扩散;具有热力学不稳定状态定律或各向异性项的流体力学模型。研究生被包括在该项目的工作中。

项目成果

期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrodynamic limit of granular gases to pressureless Euler in dimension 1
颗粒气体在维度 1 中对无压欧拉的流体力学极限
  • DOI:
    10.1090/qam/1442
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Jabin, Pierre-Emmanuel;Rey, Thomas
  • 通讯作者:
    Rey, Thomas
Continuum Approximations to Systems of Correlated Interacting Particles
相关相互作用粒子系统的连续近似
  • DOI:
    10.1007/s10955-018-2205-8
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Berlyand, Leonid;Creese, Robert;Jabin, Pierre-Emmanuel;Potomkin, Mykhailo
  • 通讯作者:
    Potomkin, Mykhailo
A Kinetic Approach to Active Rods Dynamics in Confined Domains
  • DOI:
    10.1137/19m1263510
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Berlyand;P. Jabin;M. Potomkin;Elżbieta Ratajczyk
  • 通讯作者:
    L. Berlyand;P. Jabin;M. Potomkin;Elżbieta Ratajczyk
Cellulose biodegradation models; an example of cooperative interactions in structured populations
纤维素生物降解模型;
On a non-local selection–mutation model with a gradient flow structure
  • DOI:
    10.1088/1361-6544/aa85da
  • 发表时间:
    2017-11
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    P. Jabin;Hailiang Liu
  • 通讯作者:
    P. Jabin;Hailiang Liu
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pierre-Emmanuel Jabin其他文献

Time-asymptotic convergence rates towards discrete steady states of nonlocal selection-mutation model
非局部选择变异模型离散稳态的时间渐近收敛率
Mean-field derivation of Landau-like equations
朗道型方程的平均场推导
  • DOI:
    10.1016/j.aml.2024.109195
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
    2.800
  • 作者:
    José Antonio Carrillo;Shuchen Guo;Pierre-Emmanuel Jabin
  • 通讯作者:
    Pierre-Emmanuel Jabin
Quantitative estimates of propagation of chaos for stochastic systems with $$W^{-1,\infty }$$ kernels
  • DOI:
    10.1007/s00222-018-0808-y
  • 发表时间:
    2018-07-06
  • 期刊:
  • 影响因子:
    3.600
  • 作者:
    Pierre-Emmanuel Jabin;Zhenfu Wang
  • 通讯作者:
    Zhenfu Wang

Pierre-Emmanuel Jabin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Pierre-Emmanuel Jabin', 18)}}的其他基金

Charting a New Paradigm for Large Non-Exchangeable Multi-Agent and Many-Particle Systems
为大型不可交换多代理和多粒子系统绘制新范式
  • 批准号:
    2205694
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
DMS-EPSRC Collaborative Research: Stability Analysis for Nonlinear Partial Differential Equations across Multiscale Applications
DMS-EPSRC 协作研究:跨多尺度应用的非线性偏微分方程的稳定性分析
  • 批准号:
    2219397
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Quantifying Chaos, Correlations, and Oscillations in Multi-Agent Systems and Advection Equations
量化多智能体系统和平流方程中的混沌、相关性和振荡
  • 批准号:
    2049020
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Quantifying Chaos, Correlations, and Oscillations in Multi-Agent Systems and Advection Equations
量化多智能体系统和平流方程中的混沌、相关性和振荡
  • 批准号:
    1908739
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Many Particles' Systems: Theory and Applications
多粒子系统:理论与应用
  • 批准号:
    1312142
  • 财政年份:
    2013
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant

相似国自然基金

范型(Paradigm)统一化问题
  • 批准号:
    68783007
  • 批准年份:
    1987
  • 资助金额:
    3.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

Big time crystals: a new paradigm in condensed matter
大时间晶体:凝聚态物质的新范例
  • 批准号:
    DP240101590
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334970
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
FDSS Track 1: A New Paradigm for Faculty Development in Geospace Science at Georgia Tech
FDSS Track 1:佐治亚理工学院地球空间科学教师发展的新范式
  • 批准号:
    2347873
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Targeting Inhibitory kappa B kinase alpha (IKKalpha): a new treatment paradigm for inflammatory-driven cancers
靶向抑制性 kappa B 激酶 alpha (IKKalpha):炎症驱动的癌症的新治疗范例
  • 批准号:
    MR/Y015479/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Research Grant
III: Small: Query-By-Sketch: Simplifying Video Clip Retrieval Through A Visual Query Paradigm
III:小:按草图查询:通过可视化查询范式简化视频剪辑检索
  • 批准号:
    2335881
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
A paradigm shift for predictions of freshwater harmful cyanobacteria blooms
淡水有害蓝藻水华预测的范式转变
  • 批准号:
    DP240100269
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Projects
CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
Collaborative Research: Beyond the Single-Atom Paradigm: A Priori Design of Dual-Atom Alloy Active Sites for Efficient and Selective Chemical Conversions
合作研究:超越单原子范式:双原子合金活性位点的先验设计,用于高效和选择性化学转化
  • 批准号:
    2334969
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
LEAP-HI: Towards a Paradigm of Thrombosis-Free Blood-contacting Devices
LEAP-HI:迈向无血栓血液接触装置的典范
  • 批准号:
    2245427
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Redesigning the Human-AI Interaction Paradigm for Improving AI-Assisted Decision Making
职业:重新设计人机交互范式以改善人工智能辅助决策
  • 批准号:
    2340209
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了