Collisions in Plasma: The Landau Equation and Related Models
等离子体中的碰撞:朗道方程和相关模型
基本信息
- 批准号:2206677
- 负责人:
- 金额:$ 23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Phenomena in gas dynamics and plasma physics are driven by collisions and diffusion of particles. The mathematical modeling of these effects lies at the intersection of applied mathematics and statistical physics, and it involves the study of kinetic equations, a class of nonlinear partial differential equations that captures the behavior of large number of particles in terms of the particle density. This project concentrates on two specific kinetic equations: the first describes the time evolution of the particle distribution when particles interact through binary collisions that can occur at very large microscopical distances, the second arises in the statistical description of charged quantum particles. The intent is to validate the fidelity of these models to the physical systems by studying the qualitative properties of their solutions, to ensure that a temporary breakdown of the models does not occur. The project will provide training opportunities for graduate students and postdoctoral researchers. The project aims at expanding the mathematical understanding of the dynamics of collisions in dilute gases and plasma by analyzing two kinetic partial differential equations. The first is the Landau equation, which describes the time evolution of the particle distribution when particles interact through binary collisions of grazing type. The second is the Landau-Fermi-Dirac equation, which arises in the statistical description of charged quantum particles. Both equations present challenges due to nonlinear terms, nonlocal features, and degenerate coefficients. The first part of the project deals with the qualitative properties of solutions, such as global well-posedness and finite time blow-up, characterization of the long-time behavior, and connection with macroscopic fluid equations. The second part concerns the validity of the Landau-Fermi-Dirac approximation as a correction to the Boltzmann equation in the grazing regime. The techniques employed include a novel combination of classical kinetic theory and recent theories developed for nonlinear nonlocal integro-differential equations and degenerate nonlocal differential operators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
气体动力学和等离子体物理学中的现象是由碰撞和颗粒扩散驱动的。这些效果的数学模型在于应用数学和统计物理学的相交,它涉及动力学方程的研究,动力学方程是一类非线性偏微分方程,这些方程在粒子密度方面捕获了大量粒子的行为。该项目集中于两个特定的动力学方程:第一个描述粒子通过二进制碰撞相互作用时可能发生在非常大的显微镜距离时的时间演变,第二个出现在带电量子粒子的统计描述中。目的是通过研究其解决方案的定性特性来验证这些模型对物理系统的保真度,以确保不会发生暂时的模型分解。该项目将为研究生和博士后研究人员提供培训机会。该项目旨在通过分析两个动力学偏微分方程来扩展稀释气和等离子体中碰撞动力学的数学理解。第一个是Landau方程,它描述了粒子通过放牧类型的二进制碰撞相互作用时粒子分布的时间演变。第二个是Landau-Fermi-Dirac方程,它在带电量子颗粒的统计描述中产生。这两个方程都构成了由于非线性项,非本地特征和退化系数而引起的挑战。该项目的第一部分涉及解决方案的定性属性,例如全球适合度和有限的时间爆炸,长期行为的表征以及与宏观流体方程的联系。第二部分涉及Landau-Fermi-Dirac近似的有效性,以校正放牧方程中的Boltzmann方程。所采用的技术包括经典动力学理论和针对非线性非局部非局部间不同差异方程和退化非局部差异操作员开发的最新理论的新型组合。该奖项反映了NSF的法定任务,并被认为是通过该基金会的知识分子功能和广泛的影响来评估Criteria的智力优点和广泛的criteria,并被认为是值得的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Pia Gualdani其他文献
Maria Pia Gualdani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Pia Gualdani', 18)}}的其他基金
CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
- 批准号:
2019335 - 财政年份:2019
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
- 批准号:
1554761 - 财政年份:2016
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Analysis of nonlocal effects in nonlinear parabolic partial differential equations
非线性抛物型偏微分方程中的非局部效应分析
- 批准号:
1412748 - 财政年份:2014
- 资助金额:
$ 23万 - 项目类别:
Continuing Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1310746 - 财政年份:2012
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1109682 - 财政年份:2011
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Long and Short Time Asymptotics of Systems of Nonlinear Partial Differential Equations Arising in Mean-Field Theory and Fluid-Dynamics
平均场理论和流体动力学中非线性偏微分方程组的长时和短时渐近
- 批准号:
0807636 - 财政年份:2008
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
相似国自然基金
基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
- 批准号:12375219
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
常压空气暖等离子体耦合催化剂固氮研究
- 批准号:52377155
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
船机排温条件下等离子体与催化剂协同的氨分解制氢机制研究
- 批准号:52301382
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
分子印迹磁性有序多孔光子晶体微球等离子体3DSERS仿生芯片高通量检测谷物中的多元真菌毒素研究
- 批准号:32372418
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
等离子体刻蚀条件下光刻机用钇基复合陶瓷涂层的失效机制
- 批准号:52371055
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Unveiling the Physics of High-Density Relativistic Pair Plasma Jets in the Laboratory
在实验室中揭示高密度相对论对等离子体射流的物理原理
- 批准号:
EP/Y035038/1 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Research Grant
Participant Support for 2024 Gordon Research Conference on Plasma Processing Science (GRC-PPS); Andover, New Hampshire; 21-26 July 2024
2024 年戈登等离子体加工科学研究会议 (GRC-PPS) 的参与者支持;
- 批准号:
2414674 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Standard Grant
Plasma-safe-seqs技術を用いた乳癌再発の早期診断法の確立
利用plasma-safe-seqs技术建立乳腺癌复发早期诊断方法
- 批准号:
24K19341 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Plasma-modified peptides/proteins for multi-target anticancer treatment
用于多靶点抗癌治疗的血浆修饰肽/蛋白质
- 批准号:
23K22483 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Gas measurement for air plasma generators
空气等离子发生器的气体测量
- 批准号:
10090661 - 财政年份:2024
- 资助金额:
$ 23万 - 项目类别:
Collaborative R&D