Long and Short Time Asymptotics of Systems of Nonlinear Partial Differential Equations Arising in Mean-Field Theory and Fluid-Dynamics
平均场理论和流体动力学中非线性偏微分方程组的长时和短时渐近
基本信息
- 批准号:0807636
- 负责人:
- 金额:$ 7.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-08-01 至 2012-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is an analytical study of the qualitative behavior of solutions to nonlinear systems of partial differential equations to which conventional methods of analysis do not apply. Four problem areas are under investigation: (1) long-time behavior of solutions to free-boundary problems for a nonlinear diffusion system modeling price formation in economics; (2) possible blow up for radially symmetric solutions for the incompressible Euler equation; (3) gradient flow methods for study of the quantum drift-diffusion fourth-order nonlinear parabolic system; and (4) classical and quantum kinetic models in plasma physics. The project aims to facilitate analysis of these systems by establishing links between different approaches via kinetic theory, optimal mass transportation methods, and variational techniques.This project analyzes equations that model several systems of practical importance, including price formation in economics, fluid flow, and the dynamics of plasmas. The mathematical models for these systems present substantial analytical challenges, and this work aims to improve on existing methods to enable deeper understanding of the properties of solutions to the governing equations. The results of the work will facilitate better prediction of the behavior of these complicated systems.
本研究项目是对传统分析方法不适用的非线性偏微分方程组的解的定性行为进行分析研究。 本文研究了四个方面的问题:(1)经济学中模拟价格形成的非线性扩散系统自由边界问题解的长时间行为;(2)不可压Euler方程径向对称解的可能爆破;(3)研究量子漂移扩散四阶非线性抛物方程组的梯度流方法;等离子体物理中的经典和量子动力学模型。 本课题的目的是通过动力学理论、最佳物质输运方法、变分技术等,建立不同方法之间的联系,使这些系统的分析变得容易。本课题分析了经济学中的价格形成、流体流动、等离子体动力学等几个具有实际意义的系统的模型方程。 这些系统的数学模型提出了大量的分析挑战,这项工作的目的是改进现有的方法,使更深入地了解控制方程的解决方案的属性。 工作的结果将有助于更好地预测这些复杂系统的行为。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Pia Gualdani其他文献
Instability and Bifurcation in a Trend Depending Price Formation Model
- DOI:
10.1007/s10440-016-0043-8 - 发表时间:
2016-02-12 - 期刊:
- 影响因子:1.000
- 作者:
María del Mar González;Maria Pia Gualdani;Joan Solà-Morales - 通讯作者:
Joan Solà-Morales
A blow-down mechanism for the Landau-Coulomb equation
朗道-库仑方程的排放机制
- DOI:
10.1016/j.jfa.2024.110816 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:1.600
- 作者:
Maria Pia Gualdani;Raphael Winter - 通讯作者:
Raphael Winter
Asymptotics for a Symmetric Equation in Price Formation
- DOI:
10.1007/s00245-008-9052-y - 发表时间:
2008-07-15 - 期刊:
- 影响因子:1.700
- 作者:
María del Mar González;Maria Pia Gualdani - 通讯作者:
Maria Pia Gualdani
Some Non-standard Sobolev Spaces, Interpolation and Its Application to PDE
- DOI:
10.1007/s10440-012-9674-6 - 发表时间:
2012-02-07 - 期刊:
- 影响因子:1.000
- 作者:
María del Mar González;Maria Pia Gualdani - 通讯作者:
Maria Pia Gualdani
Maria Pia Gualdani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Pia Gualdani', 18)}}的其他基金
Collisions in Plasma: The Landau Equation and Related Models
等离子体中的碰撞:朗道方程和相关模型
- 批准号:
2206677 - 财政年份:2022
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
- 批准号:
2019335 - 财政年份:2019
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
- 批准号:
1554761 - 财政年份:2016
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
Analysis of nonlocal effects in nonlinear parabolic partial differential equations
非线性抛物型偏微分方程中的非局部效应分析
- 批准号:
1412748 - 财政年份:2014
- 资助金额:
$ 7.8万 - 项目类别:
Continuing Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1310746 - 财政年份:2012
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1109682 - 财政年份:2011
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
相似国自然基金
ESL1(Erect and Short Leaf 1)调控谷子株型的分子机制解析
- 批准号:32301849
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Long-TSLP和Short-TSLP佐剂对新冠重组蛋白疫苗免疫应答的影响与作用机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
与SHORT-ROOT和SCARECROW发育途径相关的IDD家族基因的确定和功能研究
- 批准号:31871493
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
long-TSLP和short-TSLP调控肺成纤维细胞有氧糖酵解在哮喘气道重塑中的作用和机制研究
- 批准号:81700034
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
哮喘气道上皮来源long-TSLP/short-TSLP失衡对气道重塑中成纤维细胞活化的分子机制研究
- 批准号:81670026
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Machine-learning for the Electrocardiogram-based Prediction of Short-term and Long-term Mortality at the Time of Discharge in a Population-level Cohort of Patients with Access to Universal Healthcare
机器学习基于心电图预测接受全民医疗保健的人群出院时的短期和长期死亡率
- 批准号:
495436 - 财政年份:2023
- 资助金额:
$ 7.8万 - 项目类别:
Extracting features from short and long-term time-series information on the occurrence of lusterless fruit
从无光泽水果发生的短期和长期时间序列信息中提取特征
- 批准号:
20K15634 - 财政年份:2020
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Delta-T: All Optical Time Tagging in Satellite Laser Ranging And Optical Delay Compensation For Very Long Baseline Interferometry Based On Ultra-Short Mode-Locked Laser
Delta-T:卫星激光测距中的全光时间标记和基于超短锁模激光器的超长基线干涉测量的光延迟补偿
- 批准号:
423159159 - 财政年份:2019
- 资助金额:
$ 7.8万 - 项目类别:
Research Grants
A breakthrough in real-time ultrasound guidance using a T-shaped probe that enables simultaneous observation of short and long axes
使用 T 形探头实现实时超声引导的突破,可同时观察短轴和长轴
- 批准号:
18K09952 - 财政年份:2018
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Earth's weathering reactor: carbon source or sink over short and long time-scales?
地球的风化反应堆:短期和长期的碳源或碳汇?
- 批准号:
NE/P011659/1 - 财政年份:2017
- 资助金额:
$ 7.8万 - 项目类别:
Research Grant
Studies on photoperiodic regulation of flowering time: altering a long-day plant to a short-day plant
开花时间的光周期调控研究:长日照植物改为短日照植物
- 批准号:
17K07452 - 财政年份:2017
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Effects of ultra-short time exposure to volatile anesthetics in neonates on long-term cognitive function
新生儿超短时间接触挥发性麻醉药对长期认知功能的影响
- 批准号:
26861240 - 财政年份:2014
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Short Memory in Long Memory Time Series
长记忆时间序列中的短记忆
- 批准号:
1107225 - 财政年份:2011
- 资助金额:
$ 7.8万 - 项目类别:
Standard Grant
Development and application of a sensitive short-time bioassay method for evaluating long-term safety of environmental water
评价环境水长期安全性的灵敏短时生物测定方法的开发与应用
- 批准号:
21560568 - 财政年份:2009
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of specific speaker's speech variability over long and short time periods for speech recognition
研究特定说话者在长、短时间段内的语音变化以进行语音识别
- 批准号:
19700172 - 财政年份:2007
- 资助金额:
$ 7.8万 - 项目类别:
Grant-in-Aid for Young Scientists (B)