CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
基本信息
- 批准号:2019335
- 负责人:
- 金额:$ 32.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-08-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project is concerned with important physical phenomena driven by collision and diffusion of particles, whose mathematical description is based on partial differential equations of kinetic type. It is driven by applications in gas dynamics and plasma physics as well by mathematical interests in analysis, partial differential equations and mathematical physics. Kinetic equations are used to describe evolution of interacting particles, such as gas molecules, ions and electrons in a plasma. The most famous kinetic equation is the Boltzmann equation: formulated by Ludwig Boltzmann in 1872, this equation describes motion of a large class of gases. Later, in 1936 Lev Landau derived from the Boltzmann equation a new mathematical model for motion of plasma. This latter equation was named the Landau equation. Despite the fact that many mathematicians and physicists have been working on these equations, many important questions are still unanswered due to their mathematical complexity. The proposed research will fundamentally contribute to this field by bridging the gap between mathematical analysis and physics and enable further mathematical understanding of physical phenomena. The work will be enhanced by collaborations at the national and international levels and will help strengthen inter-institutional ties. The research program will be integrated with educational and outreach activities designed to (i) broaden the students' understanding of different research areas, (ii) provide the students with a modern skill set that is essential for different career paths, and (iii) promote existing connections between local institutions in the DC Metro area and help establish new avenues for collaboration and training of high quality scientific workforce. The proposed research will advance the knowledge in global properties of solutions to collisional kinetic mathematical models, improving our understanding of non-linear dynamics, entropy, equilibrium, and regularizing effects. The corresponding equations contain integro-differential operators that are highly nonlinear, singular and with degenerating coefficients. Integro-differential equations of this type have received increased attention recently: well-posedness and regularity theory are being developed since many new applications have emerged, among which conformal geometry, stochastic control and image processing. The project aims at advancing knowledge in the theories of kinetic equations, nonlocal integro-differential operators and degenerate differential operators.
本研究课题主要研究由粒子碰撞和扩散驱动的重要物理现象,其数学描述基于动力学型偏微分方程。它是由气体动力学和等离子体物理学的应用程序以及分析,偏微分方程和数学物理的数学兴趣驱动的。动力学方程用于描述相互作用的粒子(例如等离子体中的气体分子、离子和电子)的演化。最著名的动力学方程是玻尔兹曼方程:由路德维希·玻尔兹曼在1872年提出,这个方程描述了一大类气体的运动。后来,在1936年列夫朗道来自玻尔兹曼方程的一个新的数学模型运动的等离子体。这后一个方程被命名为朗道方程。尽管许多数学家和物理学家一直在研究这些方程,但由于其数学上的复杂性,许多重要问题仍然没有答案。拟议中的研究将从根本上有助于这一领域的弥合数学分析和物理之间的差距,使进一步的数学理解的物理现象。这项工作将通过国家和国际两级的合作得到加强,并将有助于加强机构间的联系。该研究计划将与教育和推广活动相结合,旨在(i)拓宽学生对不同研究领域的理解,(ii)为学生提供对不同职业道路至关重要的现代技能,(iii)促进DC大都会地区当地机构之间的现有联系,并帮助建立合作和高质量科学劳动力培训的新途径。拟议的研究将推进知识的整体性质的解决方案的碰撞动力学数学模型,提高我们的理解非线性动力学,熵,平衡和正则化的影响。相应的方程包含高度非线性,奇异和退化系数的积分微分算子。这类积分微分方程近年来受到越来越多的关注:适定性和正则性理论得到了发展,因为出现了许多新的应用,其中包括共形几何、随机控制和图像处理。该项目旨在提高动力学方程、非局部积分微分算子和退化微分算子理论的知识。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maria Pia Gualdani其他文献
Instability and Bifurcation in a Trend Depending Price Formation Model
- DOI:
10.1007/s10440-016-0043-8 - 发表时间:
2016-02-12 - 期刊:
- 影响因子:1.000
- 作者:
María del Mar González;Maria Pia Gualdani;Joan Solà-Morales - 通讯作者:
Joan Solà-Morales
A blow-down mechanism for the Landau-Coulomb equation
朗道-库仑方程的排放机制
- DOI:
10.1016/j.jfa.2024.110816 - 发表时间:
2025-04-01 - 期刊:
- 影响因子:1.600
- 作者:
Maria Pia Gualdani;Raphael Winter - 通讯作者:
Raphael Winter
Asymptotics for a Symmetric Equation in Price Formation
- DOI:
10.1007/s00245-008-9052-y - 发表时间:
2008-07-15 - 期刊:
- 影响因子:1.700
- 作者:
María del Mar González;Maria Pia Gualdani - 通讯作者:
Maria Pia Gualdani
Some Non-standard Sobolev Spaces, Interpolation and Its Application to PDE
- DOI:
10.1007/s10440-012-9674-6 - 发表时间:
2012-02-07 - 期刊:
- 影响因子:1.000
- 作者:
María del Mar González;Maria Pia Gualdani - 通讯作者:
Maria Pia Gualdani
Maria Pia Gualdani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maria Pia Gualdani', 18)}}的其他基金
Collisions in Plasma: The Landau Equation and Related Models
等离子体中的碰撞:朗道方程和相关模型
- 批准号:
2206677 - 财政年份:2022
- 资助金额:
$ 32.26万 - 项目类别:
Continuing Grant
CAREER: Nonlocal partial differential equations in collisional kinetic theory
职业:碰撞动力学理论中的非局部偏微分方程
- 批准号:
1554761 - 财政年份:2016
- 资助金额:
$ 32.26万 - 项目类别:
Continuing Grant
Analysis of nonlocal effects in nonlinear parabolic partial differential equations
非线性抛物型偏微分方程中的非局部效应分析
- 批准号:
1412748 - 财政年份:2014
- 资助金额:
$ 32.26万 - 项目类别:
Continuing Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1310746 - 财政年份:2012
- 资助金额:
$ 32.26万 - 项目类别:
Standard Grant
Analysis of Diffusion Equations with Nonlinear Singular Sources in Mean Field Games
平均场博弈中非线性奇异源扩散方程分析
- 批准号:
1109682 - 财政年份:2011
- 资助金额:
$ 32.26万 - 项目类别:
Standard Grant
Long and Short Time Asymptotics of Systems of Nonlinear Partial Differential Equations Arising in Mean-Field Theory and Fluid-Dynamics
平均场理论和流体动力学中非线性偏微分方程组的长时和短时渐近
- 批准号:
0807636 - 财政年份:2008
- 资助金额:
$ 32.26万 - 项目类别:
Standard Grant
相似国自然基金
基于Nonlocal的MRI脑肿瘤图像分割方法的研究
- 批准号:11426205
- 批准年份:2014
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
CAREER: Nonlocal partial differential equations in collective dynamics and fluid flow
职业:集体动力学和流体流动中的非局部偏微分方程
- 批准号:
2238219 - 财政年份:2023
- 资助金额:
$ 32.26万 - 项目类别:
Continuing Grant
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2021
- 资助金额:
$ 32.26万 - 项目类别:
Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2020
- 资助金额:
$ 32.26万 - 项目类别:
Discovery Grants Program - Individual
Nonlinear and Nonlocal Partial Differential Equations
非线性和非局部偏微分方程
- 批准号:
1907221 - 财政年份:2019
- 资助金额:
$ 32.26万 - 项目类别:
Standard Grant
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2019
- 资助金额:
$ 32.26万 - 项目类别:
Discovery Grants Program - Individual
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2018
- 资助金额:
$ 32.26万 - 项目类别:
Discovery Grants Program - Individual
Singularity and Asymptotics for Nonlocal Partial Differential Equations
非局部偏微分方程的奇异性和渐近性
- 批准号:
1715418 - 财政年份:2017
- 资助金额:
$ 32.26万 - 项目类别:
Continuing Grant
Nonlocal Partial Differential Equations: entropies, gradient flows, phase transitions and applications
非局部偏微分方程:熵、梯度流、相变和应用
- 批准号:
EP/P031587/1 - 财政年份:2017
- 资助金额:
$ 32.26万 - 项目类别:
Research Grant
Nonlocal and Anisotropic Partial Differential Equations in Mathematical Biology
数学生物学中的非局部和各向异性偏微分方程
- 批准号:
RGPIN-2017-04158 - 财政年份:2017
- 资助金额:
$ 32.26万 - 项目类别:
Discovery Grants Program - Individual
Fractional Partial Differential Equations and Related Nonlocal Models: Fast Numerical Methods, Analysis, and Application
分数阶偏微分方程及相关非局部模型:快速数值方法、分析和应用
- 批准号:
1620194 - 财政年份:2016
- 资助金额:
$ 32.26万 - 项目类别:
Standard Grant