Driving Electrons and Plasmas Using Geometric Group Velocity Control of Intense Ultrafast Laser Pulses

使用强超快激光脉冲的几何群速度控制驱动电子和等离子体

基本信息

  • 批准号:
    2206807
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

This award supports a research team at Colorado School of Mines to develop new methods to use ultrashort laser pulses to accelerate electrons. There is a worldwide effort to find ways for lasers to accelerate electrons, in part to bring the scale of particle accelerators down from a large multi-building facility to a tabletop. This development would address a number of national needs: secondary sources of radiation for security inspections, ultrahigh resolution electron microscopes to analyze the properties of new quantum materials, and production of electrons that can be efficiently injected into other laser-plasma based accelerators. This project will be developing methods to use shaped, intense ultrashort pulses to directly push on electrons. This approach not only pushes scientific boundaries for optical control of electrons, but it also addresses the important challenge of accelerating electrons from rest to relativistic speeds with well-defined energy and direction. The project will train undergraduate and graduate students and a postdoctoral researcher by combining theory, computational modeling and experimental work. This cutting edge research will give them experience that can lead them to careers in industry or research and academia.At the Colorado School of Mines (CSM), technology has been developed to produce shaped, ultrashort laser pulses that have an intensity profile that is tilted relative to the overall direction of the beam. For focused beams that are wide enough, this pulse front tilt has the effect of slowing down the interaction speed of the pulse with surfaces or objects, such as electrons. By slowing down the pulse, CSM calculations and simulations show that the electrons can be fully captured and accelerated in a direction perpendicular to the pulse front. Several experiments to take advantage of this method of all-optical electron acceleration will be designed and conducted. First, a short ultraviolet laser pulse will produce electrons from a nano-scale tip, then they will be injected into the focus of the laser beam. The goals of this experiment are to explore and characterize the acceleration process, and also to test whether the spatial coherence of the electrons can be preserved. If so, the result would be a new source that can be used for time-resolved coherent electron imaging. Second, tilted pulses will be used to impulsively drive strong oscillations in a plasma wave. These oscillating electrons should emit light in the terahertz part of the spectrum that can be used for measurements on novel semiconductor systems among other applications. Finally, CSM researchers will perform experiments using tilted pulse acceleration at a high-power laser facility at Colorado State University that will be the first of their kind, with the aim to accelerate electrons to relativistic energies in the MeV range.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项支持科罗拉多矿业学院的一个研究小组开发使用超短激光脉冲加速电子的新方法。 世界各地都在努力寻找激光加速电子的方法,部分原因是为了将粒子加速器的规模从大型多建筑设施降低到桌面。这一发展将满足许多国家的需求:用于安全检查的二次辐射源,用于分析新量子材料特性的高分辨率电子显微镜,以及可以有效注入其他基于激光等离子体的加速器的电子的生产。该项目将开发使用成形的强烈超短脉冲直接推动电子的方法。 这种方法不仅推动了电子光学控制的科学界限,而且还解决了将电子从静止加速到具有明确能量和方向的相对论速度的重要挑战。该项目将通过理论、计算建模和实验工作相结合,培养本科生、研究生和博士后研究人员。这种前沿的研究将给他们的经验,可以引导他们在工业或研究和学术界的职业生涯。在科罗拉多矿业学院(CSM),技术已经发展到产生成形的超短激光脉冲,其强度轮廓相对于光束的整体方向倾斜。对于足够宽的聚焦光束,这种脉冲前倾角具有减慢脉冲与表面或物体(诸如电子)的相互作用速度的效果。通过减慢脉冲,CSM计算和模拟表明,电子可以被完全捕获并在垂直于脉冲前沿的方向上加速。几个实验,以利用这种方法的全光电子加速将设计和进行。首先,短的紫外激光脉冲将从纳米级尖端产生电子,然后它们将被注入激光束的焦点。本实验的目的是探索和表征加速过程,并测试电子的空间相干性是否可以保持。如果是这样,结果将是一个新的源,可用于时间分辨相干电子成像。第二,倾斜脉冲将被用于脉冲驱动等离子体波中的强振荡。这些振荡电子应该发射光谱中太赫兹部分的光,可用于测量新的半导体系统以及其他应用。最后,CSM的研究人员将在科罗拉多州立大学的高功率激光设备上进行倾斜脉冲加速实验,这将是同类实验中的第一个,目的是将电子加速到MeV范围内的相对论能量。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Extreme-ultraviolet structured beams via high harmonic generation
  • DOI:
    10.1140/epjs/s11734-022-00678-4
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Pandey;A. de las Heras;J. Román;J. Serrano;L. Plaja;E. Baynard;M. Pittman;G. Dovillaire;S. Kazamias;C. Durfee;Carlos Hern'andez-Garc'ia;O. Guilbaud
  • 通讯作者:
    A. Pandey;A. de las Heras;J. Román;J. Serrano;L. Plaja;E. Baynard;M. Pittman;G. Dovillaire;S. Kazamias;C. Durfee;Carlos Hern'andez-Garc'ia;O. Guilbaud
Controlling Ultrafast Photoemission via Simultaneous Laser Mixing and Shaping
通过同步激光混合和整形控制超快光电发射
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lemons, Randy;Hirschman, Jack;Neveu, Nicole;Duris, Joseph;Marinell, Agostino;Durfee, Charles;Carbajo, Sergio
  • 通讯作者:
    Carbajo, Sergio
Single-pulse, reference-free, spatiotemporal characterization of ultrafast laser pulse beams via broadband ptychography
通过宽带叠层描记术对超快激光脉冲束进行单脉冲、无参考、时空表征
  • DOI:
    10.1364/ol.493234
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Goldberger, David;Barolak, Jonathan;Schmidt, David;Ivanic, Bojana;Schrama, Claudia A. M.;Car, Christopher;Larsen, Rhiannon;Durfee, Charles G.;Adams, Daniel E.
  • 通讯作者:
    Adams, Daniel E.
Enabling MHz-Level Tailored Ultrafast Photoemission via Simultaneous Laser Mixing and Shaping
通过同步激光混合和整形实现 MHz 级定制超快光电发射
  • DOI:
    10.1364/cleo_si.2023.sm2f.4
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lemons, Randy;Hirschman, Jack;Neveu, Nicole;Duris, Joseph;Marinelli, Agostino;Durfee, Charles;Carbajo, Sergio
  • 通讯作者:
    Carbajo, Sergio
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Durfee其他文献

Ponderomotive acceleration with high energy tilted ultrafast laser pulses
高能倾斜超快激光脉冲有质动力加速
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Hunt;Alex M. Wilhelm;Shoujun Wang;R. Hollinger;Ze’ev Shpilman;S. Z. Anaraki;Aaron Davenport;Daniel E. Adams;C. Menoni;Jorge Rocca;Charles Durfee
  • 通讯作者:
    Charles Durfee

Charles Durfee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Durfee', 18)}}的其他基金

Intense Laser-Plasma Interactions with Structured Ultrafast Laser Pulses
结构化超快激光脉冲的强烈激光等离子体相互作用
  • 批准号:
    1903709
  • 财政年份:
    2019
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Spatio-Temporal Control of Ionization and Electron Dynamics in Laser Plasmas
激光等离子体中电离和电子动力学的时空控制
  • 批准号:
    1619518
  • 财政年份:
    2016
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Ultrashort Laser-Plasma Solitons
超短激光等离子体孤子
  • 批准号:
    0078610
  • 财政年份:
    2000
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似海外基金

Enantiopure inorganic crystal growth using spin-polarized electrons
利用自旋极化电子生长对映体纯无机晶体
  • 批准号:
    23H01870
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simulations and multi-vantage-point observations of solar flare energetic electrons
太阳耀斑高能电子的模拟和多角度观测
  • 批准号:
    2888138
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Synthesis and functional development of atomic sheets with line-node Dirac electrons
具有线节点狄拉克电子的原子片的合成和功能开发
  • 批准号:
    23KJ0775
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Single-shot 3D charge density detection of electrons from laser wakefield acceleration via a TR-EO detector
通过 TR-EO 探测器对来自激光尾场加速的电子进行单次 3D 电荷密度检测
  • 批准号:
    23K17152
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Development of Optoelectronic Properties of Conjugated Polymers Consisting of Typical Element Complexes Based on Even-Electrons/Odd-Atoms Systems
基于偶电子/奇原子体系的典型元素配合物共轭聚合物光电性能研究
  • 批准号:
    23K13793
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Unleashing the combined power of electrons and holes for quantum computing
释放电子和空穴的联合力量以进行量子计算
  • 批准号:
    IL230100072
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Industry Laureate Fellowships
Designing new olefin oligomerization catalysts by tracking unpaired electrons
通过追踪不成对电子设计新型烯烃低聚催化剂
  • 批准号:
    2896290
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Studentship
Bethe Salpeter Equation Spectra for Very Large Systems with Thousands of Electrons or More
具有数千个或更多电子的超大型系统的 Bethe Salpeter 方程谱
  • 批准号:
    2245253
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Counting the Electrons: Nickel Catalysed Electrochemical C-H Activation
电子计数:镍催化电化学 C-H 活化
  • 批准号:
    DP230100051
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Discovery Projects
The Behavior of Solvated Electrons in the Presence of Electrolytes: Using Simulation and Experiment to Determine the Hydrated Electron's Structure from Competitive Ion Pairing
电解质存在下溶剂化电子的行为:利用模拟和实验从竞争性离子对确定水合电子的结构
  • 批准号:
    2247583
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了