Spatio-Temporal Control of Ionization and Electron Dynamics in Laser Plasmas

激光等离子体中电离和电子动力学的时空控制

基本信息

  • 批准号:
    1619518
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-06-15 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

This project will explore how a specially-shaped intense laser beam can control the movement of electrons in a plasma, a gas of electrons and charged atoms. A beam of light can put pressure on things to force it to move. Normally, this force is too small to see, but if a laser beam is bright enough and the objects have a small weight, it is possible to see these effects. In this project, we will look at how controlling the shape of a pulse of laser light can make it easier for this force to get electrons moving fast. We will also look at how these laser pulses can make strong waves in a plasma, where the electrons and ions become separated by another laser pulse. Our pulses of light are so short (a fraction of a trillionth of a second) that the ions left behind don't have time to move. The electrons accelerate in the laser pulse like a surfer on a big water wave, where she chooses just the right angle to ride the wave. We hope to show that this can lead to a new way to make beams of electrons traveling near the speed of light. The work should also help us understand how we can use these laser pulses for making small channels and for eye surgery. It will also show us how to convert these pulses to other colors of light. The research aims to explore using spatio-temporally structured intense laser pulses to control both ionization and electron dynamics in laser-produced plasmas. By controlling the transverse and angular distribution of the frequency components of the beam, we can control the spatio-temporal structure of a pulse. Important for this project, the angular spatial chirp results in an intensity envelope that is tilted relative to the direction of propagation. This gives us control of the transverse group velocity, which can range from super- to sub-luminal. We will use this control to affect the dynamics of electrons and waves in the plasma. In the free electron regime we will test our calculations that predict that with the proper pulse front tilt angle, electrons can be captured and accelerated to the side by the ponderomotive force of the beam. Such a configuration could ultimately be useful for direct acceleration of electrons to the MeV range, useful on their own or as an optical injector for wakefield accelerators. In the underdense and overdense plasma regime, the tilted pulse fronts can enhance the generation of waves in the plasma. In the latter case, we will perform a series of experiments to explore coupling of ultrafast pulses to surface plasmon waves. Our projects closely couple experiment, theory, and computational modeling. The experiments will be performed at CSM with our kHz repetition rate Ti:sapphire amplifier. Computational modeling will be performed with the open source 3D EM PIC program Epoch and with the finite-element Comsol Multiphysics platform.
该项目将探索一种特殊形状的强激光束如何控制等离子体中电子的运动,等离子体是一种电子和带电原子的气体。一束光可以对物体施加压力使其移动。通常情况下,这种力太小而看不见,但如果激光束足够明亮并且物体的重量很小,就有可能看到这些效果。在这个项目中,我们将研究如何控制激光脉冲的形状,使这种力更容易使电子快速移动。我们还将研究这些激光脉冲如何在等离子体中产生强波,在等离子体中,电子和离子被另一个激光脉冲分开。我们的光脉冲是如此之短(万亿分之一秒的几分之一),以至于留下的离子没有时间移动。电子在激光脉冲中加速,就像冲浪者在大水波上冲浪一样,她选择了正确的角度来驾驭波浪。我们希望能证明,这可以带来一种新的方法,使电子束以接近光速的速度传播。这项工作还应该帮助我们了解如何使用这些激光脉冲来制造小通道和眼科手术。它还将向我们展示如何将这些脉冲转换为其他颜色的光。该研究旨在探索使用时空结构的强激光脉冲来控制激光产生的等离子体中的电离和电子动力学。通过控制光束频率分量的横向和角向分布,我们可以控制脉冲的时空结构。对于这个项目很重要的是,角空间啁啾导致相对于传播方向倾斜的强度包络。这使我们能够控制横向群速度,其范围可以从超光速到亚光速。我们将利用这种控制来影响等离子体中电子和波的动力学。在自由电子制度,我们将测试我们的计算,预测与适当的脉冲前倾角,电子可以被捕获和加速到一边的有质动力的光束。这种配置最终可能有助于将电子直接加速到MeV范围,单独使用或作为韦克菲尔德加速器的光学注入器。在欠密和过密等离子体区,倾斜的脉冲前沿可以增强等离子体中的波的产生。在后一种情况下,我们将进行一系列的实验来探索超快脉冲耦合到表面等离子体波。我们的项目紧密结合实验,理论和计算建模。实验将在CSM与我们的kHz重复率钛:蓝宝石放大器进行。计算建模将使用开源3D EM PIC程序Epoch和有限元Comsol Multiphysics平台进行。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tilted Snowplow Ponderomotive Electron Acceleration With Spatio-Temporally Shaped Ultrafast Laser Pulses
  • DOI:
    10.3389/fphy.2019.00066
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Alex M. Wilhelm;C. Durfee
  • 通讯作者:
    Alex M. Wilhelm;C. Durfee
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Durfee其他文献

Ponderomotive acceleration with high energy tilted ultrafast laser pulses
高能倾斜超快激光脉冲有质动力加速
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Hunt;Alex M. Wilhelm;Shoujun Wang;R. Hollinger;Ze’ev Shpilman;S. Z. Anaraki;Aaron Davenport;Daniel E. Adams;C. Menoni;Jorge Rocca;Charles Durfee
  • 通讯作者:
    Charles Durfee

Charles Durfee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Durfee', 18)}}的其他基金

Driving Electrons and Plasmas Using Geometric Group Velocity Control of Intense Ultrafast Laser Pulses
使用强超快激光脉冲的几何群速度控制驱动电子和等离子体
  • 批准号:
    2206807
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Intense Laser-Plasma Interactions with Structured Ultrafast Laser Pulses
结构化超快激光脉冲的强烈激光等离子体相互作用
  • 批准号:
    1903709
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Ultrashort Laser-Plasma Solitons
超短激光等离子体孤子
  • 批准号:
    0078610
  • 财政年份:
    2000
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant

相似海外基金

Engineering Tools for Rapid Loss of Protein Function with Spatio-Temporal Control in Zebrafish
通过时空控制斑马鱼蛋白质功能快速丧失的工程工具
  • 批准号:
    10571350
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
Establishment of spatio-temporal heat transport control by van der Waals materials
范德华材料时空热传输控制的建立
  • 批准号:
    23H01445
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of Enteric Nervous System Regeneration in Zebrafish Using a Cell Ablation System with Spatio-Temporal Control
使用具有时空控制的细胞消融系统研究斑马鱼肠神经系统再生
  • 批准号:
    10525953
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
A Light Modulator Technology for Spatio-Temporal Coherence Control
一种用于时空相干控制的光调制器技术
  • 批准号:
    EP/W022567/1
  • 财政年份:
    2022
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Research Grant
All-Optical Plasma Channels and Electron Injection with Spatio-temporal Control
时空控制的全光等离子体通道和电子注入
  • 批准号:
    EP/V006797/1
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Research Grant
Spatio-temporal-polarization control of ultrafast laser interactions
超快激光相互作用的时空偏振控制
  • 批准号:
    RGPIN-2017-06948
  • 财政年份:
    2021
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Discovery Grants Program - Individual
Spatio-temporal-polarization control of ultrafast laser interactions
超快激光相互作用的时空偏振控制
  • 批准号:
    RGPIN-2017-06948
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Discovery Grants Program - Individual
CAREER: DYNAMIC LIVING HYDROGEL NETWORKS FOR SPATIO-TEMPORAL CONTROL OF CELL SIGNALING
职业:用于细胞信号传导时空控制的动态活水凝胶网络
  • 批准号:
    2034202
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Continuing Grant
Elucidation and control of the physical and chemical mechanisms governing the spatio-temporal structure of detached recombining plasmas
阐明和控制分离重组等离子体时空结构的物理和化学机制
  • 批准号:
    20H00138
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Observation and control of the spatio-temporal characteristics of plasmons induced in noble metal nanoparticles
贵金属纳米粒子诱导等离子体激元时空特征的观测与控制
  • 批准号:
    19K15511
  • 财政年份:
    2019
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了