Intense Laser-Plasma Interactions with Structured Ultrafast Laser Pulses

结构化超快激光脉冲的强烈激光等离子体相互作用

基本信息

  • 批准号:
    1903709
  • 负责人:
  • 金额:
    $ 46.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-05-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

Plasma is a gas-like state of matter with properties determined by collective interactions between free-roaming electrons and ions. In this project, ultra-intense lasers will be used to create, control and study plasmas. Pulses of laser light from modern lasers can be made so focused as to allow the laser fields to push on electrons like a snowplow. In this project, the laser pulses are shaped so that they travel with a tilt, much as a tilted snowplow blade scoops up the snow and pushes it to the side. With careful laser control, the electrons can be separated from the ions and be formed by such a tilted snowplow into a beam. If the range of electron beam angles and energies can be made as small as the calculations predict, and the beam energy as high as the calculations predict, the electron beam can be used to study materials, or be boosted to even higher energies with additional particle acceleration techniques. The project will support and train one PhD student and two undergraduate students at the Colorado School of Mines. This project exploits the structuring of the spatial and temporal shape of intense, ultrafast laser pulses to control electron dynamics in plasmas. One type of structuring that will be used is where the spectral components of the laser pulse are overlapped at the focus with an incident angle that is linearly dependent on the frequency. This results in a pulse that sweeps across the focal plane with a speed that can be much lower than the speed of light. This reduced speed allows the light pressure on the electrons to capture and accelerate them to the side. With careful shaping of the transverse intensity profile, theory predicts electrons can be accelerated with a narrow energy and angular spread, making them useful for ultrafast electron diffraction and injection into other laser-based electron accelerators. In this project, the physics of this acceleration mechanism will be experimentally and computationally explored. At higher density, the fast current pulse created by this mechanism is predicted to produce terahertz radiation that will be characterized with novel single pixel imaging techniques. Another method of structuring the laser light involves converting the polarization state of the laser beam to transverse electric. When this azimuthally polarized beam is focused tightly, the magnetic field develops a longitudinal component on axis that can be over 10 kTesla, orders of magnitude higher than the strongest magnets. A short wavelength probe beam propagating along this field will be used to probe how waves are altered by this strong magnetic field.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
等离子体是一种类似气体的物质状态,其特性由自由漫游的电子和离子之间的集体相互作用决定。在该项目中,超强激光将用于创建、控制和研究等离子体。 现代激光器发出的激光脉冲可以如此集中,从而使激光场像扫雪机一样推动电子。在这个项目中,激光脉冲的形状使其倾斜行进,就像倾斜的扫雪机刀片铲起雪并将其推到一边一样。 通过仔细的激光控制,电子可以与离子分离,并通过这种倾斜的扫雪机形成光束。如果电子束角度和能量的范围可以像计算预测的那样小,并且束流能量可以像计算预测的那样高,那么电子束可以用于研究材料,或者通过额外的粒子加速技术将其提升到更高的能量。 该项目将支持和培训科罗拉多矿业学院的一名博士生和两名本科生。该项目利用强超快激光脉冲的空间和时间形状的结构来控制等离子体中的电子动力学。将使用的一种结构类型是激光脉冲的光谱分量在焦点处重叠,入射角与频率线性相关。这导致脉冲以远低于光速的速度扫过焦平面。这种降低的速度使得电子上的光压能够捕获电子并将它们加速到侧面。通过仔细塑造横向强度分布,理论预测电子可以以窄能量和角展度加速,这使得它们可用于超快电子衍射和注入其他基于激光的电子加速器。在这个项目中,将通过实验和计算来探索这种加速机制的物理原理。在更高的密度下,这种机制产生的快速电流脉冲预计会产生太赫兹辐射,这种辐射将通过新颖的单像素成像技术来表征。构造激光的另一种方法涉及将激光束的偏振态转换为横向电偏振态。当该方位角偏振光束紧密聚焦时,磁场会在轴上产生超过 10 kTesla 的纵向分量,比最强的磁铁高几个数量级。沿该场传播的短波长探测光束将用于探测强磁场如何改变波。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Direct Laser Acceleration of Electrons using a Shaped Tilted Ponderomotive Mirror
使用成形倾斜有质动力镜对电子进行直接激光加速
Tilted Snowplow Ponderomotive Electron Acceleration With Spatio-Temporally Shaped Ultrafast Laser Pulses
  • DOI:
    10.3389/fphy.2019.00066
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Alex M. Wilhelm;C. Durfee
  • 通讯作者:
    Alex M. Wilhelm;C. Durfee
Ultrashort?Pulse-beam Characterization Using Femtosecond Interferometric?Shack-Hartmann Frequency Resolved Optical Gating
超短?使用飞秒干涉测量的脉冲束表征?Shack-Hartmann 频率分辨光选通
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hunt, Patrick R.;Ivanic, Bojana;Adams, Daniel E.;Durfee, Charles G.
  • 通讯作者:
    Durfee, Charles G.
Control of Pulse Front Tilt and Curvature for Ultrafast Ponderomotive Electron Acceleration
超快有质动力电子加速的脉冲前沿倾斜和曲率控制
Spectral Phase and Amplitude Retrieval and Compensation for Random Access Microscopy
随机存取显微镜的光谱相位和幅度检索与补偿
  • DOI:
    10.1364/cleo_at.2019.am2i.4
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Allende Motz, Alyssa M.;Durfee, Charles G.;Squier, Jeff A.;Adams, Daniel E.
  • 通讯作者:
    Adams, Daniel E.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charles Durfee其他文献

Ponderomotive acceleration with high energy tilted ultrafast laser pulses
高能倾斜超快激光脉冲有质动力加速
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick Hunt;Alex M. Wilhelm;Shoujun Wang;R. Hollinger;Ze’ev Shpilman;S. Z. Anaraki;Aaron Davenport;Daniel E. Adams;C. Menoni;Jorge Rocca;Charles Durfee
  • 通讯作者:
    Charles Durfee

Charles Durfee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charles Durfee', 18)}}的其他基金

Driving Electrons and Plasmas Using Geometric Group Velocity Control of Intense Ultrafast Laser Pulses
使用强超快激光脉冲的几何群速度控制驱动电子和等离子体
  • 批准号:
    2206807
  • 财政年份:
    2022
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Continuing Grant
Spatio-Temporal Control of Ionization and Electron Dynamics in Laser Plasmas
激光等离子体中电离和电子动力学的时空控制
  • 批准号:
    1619518
  • 财政年份:
    2016
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Continuing Grant
Ultrashort Laser-Plasma Solitons
超短激光等离子体孤子
  • 批准号:
    0078610
  • 财政年份:
    2000
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Standard Grant

相似国自然基金

基于激光与管电极电解同步复合(Laser-STEM)的低损伤大深度小孔加工技术基础研究
  • 批准号:
    51905525
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
长链非编码RNA lnc-LASER通过HNF-1α-PCSK9 调控肝脏胆固醇平衡的机制研究
  • 批准号:
    81600343
  • 批准年份:
    2016
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Study of plasma dynamics with non-thermal energy cascade under intense laser irradiation
强激光辐照下非热能级联等离子体动力学研究
  • 批准号:
    23K03354
  • 财政年份:
    2023
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Synthesising Extreme Light Pulses for Applications in Intense Laser-Plasma Interactions
合成极端光脉冲用于强激光-等离子体相互作用的应用
  • 批准号:
    2774608
  • 财政年份:
    2022
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Studentship
Extreme THz Science with Ultra-Intense Laser Induced Plasma
超强激光诱导等离子体的极限太赫兹科学
  • 批准号:
    2152081
  • 财政年份:
    2022
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Standard Grant
High Fidelity Fluid-Kinetic Hybrid Modeling of Intense, Short Pulse Laser Plasma Interactions
强短脉冲激光等离子体相互作用的高保真流体动力学混合建模
  • 批准号:
    2108788
  • 财政年份:
    2021
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Standard Grant
Femtosecond-Scale Time Resolved Measurements of Intense Laser-Plasma Interactions
强激光-等离子体相互作用的飞秒级时间分辨测量
  • 批准号:
    1811677
  • 财政年份:
    2016
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Studentship
Demonstration of laser-driven ultrafast and intense electron source with solid-plasma hybrid cathode
具有固体等离子体混合阴极的激光驱动超快强电子源演示
  • 批准号:
    16K17845
  • 财政年份:
    2016
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
X-ray radiation production in ultra-intense laser-dense-plasma interactions
超强激光-致密等离子体相互作用中 X 射线辐射的产生
  • 批准号:
    1811641
  • 财政年份:
    2016
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Studentship
Physics of interactions between ultrahigh intense laser and high energy density plasma under kilo tesla magnetic field
千特斯拉磁场下超高强激光与高能密度等离子体相互作用物理
  • 批准号:
    15K17798
  • 财政年份:
    2015
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Simulation of formation of high intense magnetic field using laser plasma and its application
激光等离子体强磁场形成模拟及其应用
  • 批准号:
    26400532
  • 财政年份:
    2014
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Surface plasma electron acceleration by intense-laser induced pulse surface wave traveling on a metal wire
强激光感应脉冲表面波在金属线上传播的表面等离子体电子加速
  • 批准号:
    25600138
  • 财政年份:
    2013
  • 资助金额:
    $ 46.05万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了