RUI: Atomic Physics with A Twist

RUI:扭曲的原子物理学

基本信息

项目摘要

The ability to image and control electron dynamics at the atomic scale has led to a deeper understanding of atomic structures and interactions, which in turn has inspired technological advances in areas such as microscopy, quantum computing, and quantum communication. Many of these advances use ultrashort light pulses or electron beams to control and observe energy and momentum properties of atomic electrons on their natural attosecond timescale (a billionth of a billionth of a second). Recently, so-called twisted attosecond laser pulses and electron beams have become available. These beams carry orbital angular momentum, which opens the door to controlling not just the energy and momentum properties of atomic electrons, but also their rotational properties. This research will develop and apply theoretical models for using ultrashort twisted laser pulses and twisted electron beams to image and control the rotational properties of atomic electrons. It will promote the progress of attosecond physics by developing new techniques for studying twisted electron creation, characterizing the temporal dynamics of previously inaccessible atomic states, and establishing the efficiency of the creation of atomic states used quantum computing applications. These projects will provide the theoretical underpinning for future experiments and technological developments, demonstrate the advantages of twisted light and electrons in controlling atomic-level rotational motion, and enhance the U.S. influence in attosecond physics. In addition, the research will train the next generation of the science and technology workforce by providing cutting-edge research opportunities to undergraduate students who will gain necessary career skills through hands-on participation in model development, implementation, and analysis. Students will present their results at regional and national conferences, giving them a more diverse view of scientific research and enhancing their access to science and technology careers.This research will use computational modeling to (1) develop the new techniques of twisted attosecond energy and angular streaking using Laguerre-Gauss optical vortex pulses and (2) determine if twisted optical and electron wave packets can improve the efficiency of circular Rydberg atom production for use in quantum computing applications. In the first project, the research will combine optical vortex wave packets with attosecond streaking techniques to study the effects of angular momentum on the creation of twisted photoelectrons, the ionization time delay between magnetic sublevels, and the tunneling barriers of different angular momentum states. Calculations will be performed using the time-dependent Schroedinger equation and semi-classical models to provide both quantitative and qualitative insight. This research will result in theoretical models that outline new twisted attosecond streaking techniques and will have far-reaching implications for fundamental quantum mechanics and applications in fields such as chemical reaction control and charge migration in solid state physics. In the second project, the efficiency with which twisted photons and electrons can be used to create circular Rydberg states will be determined. The research will result in a comprehensive dataset detailing which Rydberg states are most accessible through twisted wave packet excitation and provide much-needed information for future applications that have the potential to transform fields such as quantum computing and quantum simulation. Both projects will enhance the Illinois STEM workforce by providing cutting-edge training opportunities to a diverse group of undergraduate students from the freshman to senior level.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在原子尺度上成像和控制电子动力学的能力使人们对原子结构和相互作用有了更深入的了解,这反过来又促进了显微镜、量子计算和量子通信等领域的技术进步。其中许多进展使用超短光脉冲或电子束来控制和观察原子电子在其自然阿秒时间尺度(十亿分之一秒)上的能量和动量特性。最近,所谓的扭曲阿秒激光脉冲和电子束已经出现。这些光束携带轨道角动量,这为控制原子电子的能量和动量属性以及它们的旋转属性打开了大门。这项研究将开发和应用理论模型,利用超短扭曲激光脉冲和扭曲电子束来成像和控制原子电子的旋转性质。它将通过开发新的技术来研究扭曲电子的产生,表征以前无法获得的原子态的时间动力学,并建立使用量子计算应用来创建原子态的效率,从而促进阿秒物理学的进步。这些项目将为未来的实验和技术发展提供理论基础,展示扭曲光和电子在控制原子级旋转运动方面的优势,并增强美国在阿秒物理学中的影响力。此外,这项研究将通过向本科生提供尖端研究机会来培训下一代科技劳动力,这些本科生将通过亲身参与模型开发、实施和分析来获得必要的职业技能。学生们将在地区和国家会议上展示他们的成果,让他们对科学研究有更多的看法,并增加他们接触科学和技术职业的机会。这项研究将使用计算建模来(1)开发使用拉盖尔-高斯光学涡旋脉冲的扭曲阿秒能量和角条纹的新技术,以及(2)确定扭曲的光学和电子波包是否可以提高用于量子计算应用的圆形里德堡原子的生产效率。在第一个项目中,研究将结合光学涡旋波包和阿秒条纹技术来研究角动量对扭曲光电子产生的影响、磁子能级之间的电离时延以及不同角动量态的隧穿势垒。计算将使用与时间相关的薛定谔方程和半经典模型,以提供定量和定性的见解。这项研究将产生勾勒出新的扭曲阿秒条纹技术的理论模型,并将对基本量子力学和固体物理中的化学反应控制和电荷迁移等领域的应用产生深远的影响。在第二个项目中,将确定利用扭曲的光子和电子创建圆形里德堡态的效率。这项研究将产生一个全面的数据集,详细说明通过扭曲波包激发最容易获得哪些里德堡态,并为未来有可能改变量子计算和量子模拟等领域的应用提供急需的信息。这两个项目都将通过为从一年级到高级的不同本科生群体提供尖端培训机会来加强伊利诺伊州STEM的劳动力队伍。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spectral phase effects in above threshold ionization
高于阈值电离的光谱相位效应
  • DOI:
    10.1088/1361-6455/acc49e
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harris, A L
  • 通讯作者:
    Harris, A L
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allison Harris其他文献

Acetic Acid Iontophoresis in The Management Of Heterotopic Ossification in an Individual Post-Stroke: A Case Report
  • DOI:
    10.1016/j.apmr.2020.09.250
  • 发表时间:
    2020-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Allison Harris;Lauren Greenfeld
  • 通讯作者:
    Lauren Greenfeld
Occupational Therapy: An Essential Component of Support for Young Children With Cancer
职业治疗:支持患有癌症的幼儿的重要组成部分
  • DOI:
    10.1177/15394492221115060
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jessica Sparrow;Hannah Dagen;Allison Harris;Sarah Schwartzberg;Lucy Weathers;Megan Kibby;Jennifer L. Harman;L. Jacola
  • 通讯作者:
    L. Jacola
Postgraduate Medical Ultrasound Programme: Have we Flipped?
医学超声研究生课程:我们翻转了吗?
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Harrison;Allison Harris
  • 通讯作者:
    Allison Harris
A systems approach to improving medication reconciliation in an academic medical center
改善学术医疗中心药物协调的系统方法

Allison Harris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allison Harris', 18)}}的其他基金

RUI: Path Integrals and Charged Particle Dynamics
RUI:路径积分和带电粒子动力学
  • 批准号:
    1912093
  • 财政年份:
    2019
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
RUI: Path Integral Approach to Ion-Impact Collisions
RUI:离子碰撞碰撞的路径积分方法
  • 批准号:
    1505217
  • 财政年份:
    2015
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant

相似海外基金

RUI: Using Atomic Physics to Achieve Strong Electron Coupling in Ultracold Plasmas
RUI:利用原子物理实现超冷等离子体中的强电子耦合
  • 批准号:
    2011335
  • 财政年份:
    2020
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
RUI: Atomic Physics with Rapidly Frequency Chirped Laser Light
RUI:使用快速频率啁啾激光的原子物理学
  • 批准号:
    1803837
  • 财政年份:
    2018
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
RUI: High-Precision Atomic Structure Measurements and Tests of Fundamental Physics in Group IIIA Atoms
RUI:IIIA族原子的高精度原子结构测量和基础物理测试
  • 批准号:
    1404206
  • 财政年份:
    2014
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
RUI: Precise Atomic Structure Measurements and Tests of Fundamental Physics in Group IIIA atoms
RUI:IIIA 族原子的精确原子结构测量和基础物理测试
  • 批准号:
    0969781
  • 财政年份:
    2010
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
RUI - The Physics of Coupled Atomic-Molecular Condensate Systems
RUI - 耦合原子分子凝聚系统的物理
  • 批准号:
    0555646
  • 财政年份:
    2006
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
RUI: High-Precision Atomic Structure Measurements and Tests of Fundamental Physics
RUI:高精度原子结构测量和基础物理测试
  • 批准号:
    0555552
  • 财政年份:
    2006
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
MRI/RUI Acquisition of an additional low-energy grating for the existing monochromator on the atomic and molecular physics beam line 10.0.1 at the Advanced Light Source
MRI/RUI 在先进光源的原子和分子物理光束线 10.0.1 上为现有单色仪额外采购一个低能光栅
  • 批准号:
    0321055
  • 财政年份:
    2003
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Standard Grant
RUI: Precise Atomic Structure Measurements and Tests of Fundamental Physics
RUI:精确的原子结构测量和基础物理测试
  • 批准号:
    0140189
  • 财政年份:
    2002
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
RUI: Research in Theoretical Atomic Physics
RUI:理论原子物理研究
  • 批准号:
    0097982
  • 财政年份:
    2001
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
RUI: High-Precision Atomic Structure Measurements and Atomic Tests of Electroweak Physics
RUI:高精度原子结构测量和电弱物理原子测试
  • 批准号:
    9721403
  • 财政年份:
    1998
  • 资助金额:
    $ 17.09万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了