Structure Preserving Reduced Rank Approximation: Theory, Algorithms and Software
结构保持降阶近似:理论、算法和软件
基本信息
- 批准号:9901992
- 负责人:
- 金额:$ 16.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:1999
- 资助国家:美国
- 起止时间:1999-09-01 至 2002-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Determining a structure preserving reduced rank approximation to a given structured matrix has many important applications such as signal processing, image processing, system identification, and control processes. The goal of this project is to develop the mathematical foundation, and design fast and robust algorithms for computing this structured reduced rank approximation, and making the resulting software available for use in the application areas. In this research, all linear and nonlinear structures of matrices will be considered, where the matrices can be represented as a differentiable function of a parameter vector, which includes sparse, symmetric, banded with fixed bandwidth, Hankel, Toeplitz, Vandermonde, or combinations of these. In addition, the project will investigate a broad range of applications for which new techniques will prove effective, and for which the accuracy of solutions can be improved dramatically with the exploitation of both rank deficiency and problem structure. The basic approach used is the minimization of the norm of an appropriate error, while preserving the structure and specified lower rank of the approximating matrix. This is a difficult problem, both theoretically and computationally, because the structure preservation and rank reduction requirements make this a nonconvex minimization problem, which may have more than one local minimum. To overcome this difficulty, several techniques will be attempted, including the way in which the reduced rank condition is formulated, and the selection of good initial values. This approach leads to a structure preserving overdetermined system of equations, which can be solved by the Structured Total Least Norm (STLN) algorithm, developed previously by the principal investigator.
确定给定结构矩阵的保结构降秩逼近具有许多重要的应用,例如信号处理、图像处理、系统识别和控制过程。 该项目的目标是发展数学基础,设计快速和强大的算法来计算这种结构化的降秩近似,并使所得软件可用于应用领域。 在这项研究中,所有的线性和非线性结构的矩阵将被考虑,其中矩阵可以表示为一个参数向量的可微函数,其中包括稀疏,对称,带状固定带宽,汉克尔,Toeplitz,范德蒙,或这些组合。 此外,该项目将调查广泛的应用,新技术将被证明是有效的,并且解决方案的准确性可以通过利用秩亏和问题结构来显着提高。所使用的基本方法是最小化适当误差的范数,同时保持近似矩阵的结构和指定的低秩。这在理论上和计算上都是一个困难的问题,因为结构保持和秩减少的要求使得这是一个非凸最小化问题,它可能有一个以上的局部最小值。 为了克服这一困难,将尝试几种技术,包括降秩条件的制定方式,以及良好的初始值的选择。这种方法导致一个结构保持超定方程组,它可以解决的结构总最小范数(STLN)算法,以前开发的主要研究者。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Haesun Park其他文献
Unfolding Latent Tree Structures using 4th Order Tensors
使用四阶张量展开潜在树结构
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Mariya Ishteva;Haesun Park;Le Song - 通讯作者:
Le Song
A Dynamic Data Driven Application System for Vehicle Tracking
用于车辆跟踪的动态数据驱动应用系统
- DOI:
10.1016/j.procs.2014.05.108 - 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
R. Fujimoto;Angshuman Guin;M. Hunter;Haesun Park;G. Kanitkar;R. Kannan;Michael Milholen;Sabra A. Neal;P. Pecher - 通讯作者:
P. Pecher
GPS-Based Shortest-Path Routing Scheme in Mobile Ad Hoc Network
移动Ad Hoc网络中基于GPS的最短路径路由方案
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Haesun Park;Soo;So;Joo - 通讯作者:
Joo
Biocompatibility Issues of Implantable Drug Delivery Systems
- DOI:
10.1023/a:1016012520276 - 发表时间:
1996-01-01 - 期刊:
- 影响因子:4.300
- 作者:
Haesun Park;Kinam Park - 通讯作者:
Kinam Park
Efficient Implementation of Jacobi Algorithms and Jacobi Sets on Distributed Memory Architectures
雅可比算法和雅可比集在分布式内存架构上的高效实现
- DOI:
- 发表时间:
1990 - 期刊:
- 影响因子:0
- 作者:
P. Eberlein;Haesun Park - 通讯作者:
Haesun Park
Haesun Park的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Haesun Park', 18)}}的其他基金
Collaborative Research: OAC Core: Robust, Scalable, and Practical Low Rank Approximation
合作研究:OAC 核心:稳健、可扩展且实用的低阶近似
- 批准号:
2106738 - 财政年份:2021
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
SI2-SSE: Collaborative Research: High Performance Low Rank Approximation for Scalable Data Analytics
SI2-SSE:协作研究:可扩展数据分析的高性能低秩近似
- 批准号:
1642410 - 财政年份:2016
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
CAREER: New Representations of Probability Distributions to Improve Machine Learning --- A Unified Kernel Embedding Framework for Distributions
职业:改进机器学习的概率分布的新表示——统一的分布内核嵌入框架
- 批准号:
1350983 - 财政年份:2014
- 资助金额:
$ 16.1万 - 项目类别:
Continuing Grant
EAGER: Hierarchical Topic Modeling by Nonnegative Matrix Factorization for Interactive Multi-scale Analysis of Text Data
EAGER:通过非负矩阵分解进行分层主题建模,用于文本数据的交互式多尺度分析
- 批准号:
1348152 - 财政年份:2013
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
EAGER: Fast and Accurate Nonnegative Tensor Decompositions: Algorithms and Software
EAGER:快速准确的非负张量分解:算法和软件
- 批准号:
0956517 - 财政年份:2009
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
FODAVA-Lead: Dimension Reduction and Data Reduction: Foundations for Visualization
FODAVA-Lead:降维和数据缩减:可视化的基础
- 批准号:
0808863 - 财政年份:2008
- 资助金额:
$ 16.1万 - 项目类别:
Continuing Grant
MSPA-MCS: Collaborative Research: Fast Nonnegative Matrix Factorizations: Theory, Algorithms, and Applications
MSPA-MCS:协作研究:快速非负矩阵分解:理论、算法和应用
- 批准号:
0732318 - 财政年份:2007
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
SGER: Effective Network Anomaly Detection Based on Adaptive Machine Learning
SGER:基于自适应机器学习的有效网络异常检测
- 批准号:
0715342 - 财政年份:2007
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
Collaborative Research: Greedy Approximations with Nonsubmodular Potential Functions
协作研究:具有非子模势函数的贪婪近似
- 批准号:
0728812 - 财政年份:2007
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
CompBio: Collaborative Research: Development of Effective Gene Selection Algorithms for Microarray Data Analysis
CompBio:合作研究:开发用于微阵列数据分析的有效基因选择算法
- 批准号:
0621889 - 财政年份:2006
- 资助金额:
$ 16.1万 - 项目类别:
Continuing Grant
相似海外基金
Design and Analysis of Structure Preserving Discretizations to Simulate Pattern Formation in Liquid Crystals and Ferrofluids
模拟液晶和铁磁流体中图案形成的结构保持离散化的设计和分析
- 批准号:
2409989 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
Structure-Preserving Integrators for Lévy-Driven Stochastic Systems
Levy 驱动随机系统的结构保持积分器
- 批准号:
EP/Y033248/1 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Research Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Continuing Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
HarmonicAI: Human-guided collaborative multi-objective design of explainable, fair and privacy-preserving AI for digital health
HarmonicAI:用于数字健康的可解释、公平和隐私保护人工智能的人工引导协作多目标设计
- 批准号:
EP/Z000262/1 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Research Grant
Preserving dark skies with neuromorphic camera technology
利用神经形态相机技术保护黑暗天空
- 批准号:
ST/Y50998X/1 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Research Grant
Structure theory for measure-preserving systems, additive combinatorics, and correlations of multiplicative functions
保测系统的结构理论、加法组合学和乘法函数的相关性
- 批准号:
2347850 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Continuing Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402817 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402816 - 财政年份:2024
- 资助金额:
$ 16.1万 - 项目类别:
Standard Grant














{{item.name}}会员




