RUI: Clock Transitions, Coherence and Quantum Dynamics in Molecular Nanomagnets

RUI:分子纳米磁体中的时钟跃迁、相干性和量子动力学

基本信息

  • 批准号:
    2207624
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2025-07-31
  • 项目状态:
    未结题

项目摘要

Non-Technical Abstract:The burgeoning field of quantum computation and quantum information relies on the ability to control the quantum states of qubits, the physical systems used for quantum information processing. Unlike classical bits, in which information is stored as zeros or ones, qubits can be put into quantum superpositions of zero and one states. In addition, qubits can be entangled with one another to create unique states that cannot be described as belonging to any individual qubit. Superposition and entanglement are the quantum underpinnings that give quantum computation its potential power, a power that is accompanied by a certain delicacy: the information stored and processed in a quantum computer can easily be disturbed by interactions with uncontrolled elements of the environment, such as fluctuating magnetic fields or vibrations. This project focuses on employing molecular nanomagnets as qubits and understanding and mitigating the environmental elements that affect the magnets’ ability to retain quantum information. So-called clock transitions can help isolate the magnets from the effects of fluctuating magnetic fields. In this research, microwave photons are used to control the magnetic states of these magnets and to measure how long quantum information can be stored in these systems, the coherence time. In the process of conducting this research, the team is investigating fundamental quantum properties of these magnets in the presence of microwave radiation. The research is being conducted at a primarily undergraduate institution with the participation of undergraduate student-scholars and graduate students. These researchers are all gaining valuable research skills that will further the development of their careers in scientific and related technical fields in academia and the rapidly growing commercial quantum information sector. Technical Abstract:The burgeoning field of quantum computing and quantum information requires qubits with long coherence times that are also easy to manipulate with external control parameters. This project focuses on employing molecular nanomagnets as qubits and understanding and mitigating the decoherence from environmental degrees of freedom. The molecular magnets studied in this project exhibit “clock transitions” that reduce the decohering effects of fluctuating magnetic fields. Using pulse electron-spin resonance techniques, the quantum states of these molecules are controlled, and their coherence times are measured. Mechanisms of decoherence are investigated by comparing the coherence times at clock transitions with those measured when the system is tuned away from clock transitions. In addition, the researchers are exploring various pulse schemes to dynamically decouple the magnets from decohering environmental fluctuations. Pulsed microwave radiation is also being employed to investigate using an ensemble of molecular magnets as a medium for the holographic storage of quantum information. In the process of conducting this research, the team is investigating fundamental quantum properties of these magnets when coupled to a microwave radiation field. The research is being conducted at a primarily undergraduate institution with the participation of undergraduate student-scholars and graduate students. These researchers are all gaining valuable research skills that will further the development of their careers in scientific and technical fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:量子计算和量子信息的新兴领域依赖于控制量子比特的量子态的能力,量子比特是用于量子信息处理的物理系统。与以零或一存储信息的经典比特不同,量子比特可以放入零态和一态的量子叠加中。此外,量子比特可以相互纠缠,以创建不能被描述为属于任何单个量子比特的独特状态。叠加和纠缠是赋予量子计算潜在力量的量子基础,这种力量伴随着一定的微妙:量子计算机中存储和处理的信息很容易受到与环境中不可控元素的相互作用的干扰,例如波动的磁场或振动。该项目的重点是将分子纳米磁铁用作量子比特,并了解和缓解影响磁体保留量子信息能力的环境因素。所谓的时钟转换可以帮助磁体免受波动磁场的影响。在这项研究中,微波光子被用来控制这些磁体的磁态,并测量量子信息在这些系统中可以存储多长时间,即相干时间。在进行这项研究的过程中,该团队正在研究这些磁铁在微波辐射存在下的基本量子性质。这项研究是在一个以本科生为主的机构进行的,本科生-学者和研究生参与其中。这些研究人员都在获得宝贵的研究技能,这些技能将进一步推动他们在学术界和快速增长的商业量子信息领域的科学和相关技术领域的职业发展。技术摘要:量子计算和量子信息的新兴领域需要具有长相干时间的量子比特,这些量子比特也很容易通过外部控制参数进行操作。这个项目的重点是使用分子纳米磁铁作为量子比特,了解和缓解环境自由度的退相干。这个项目中研究的分子磁体表现出“时钟跃迁”,可以减少波动磁场的退离效应。利用脉冲电子自旋共振技术,控制了这些分子的量子态,并测量了它们的相干时间。通过比较时钟跃迁时的相干时间与系统调谐远离时钟跃迁时测量的相干时间,研究了消相干的机制。此外,研究人员正在探索各种脉冲方案,以动态地将磁铁从环境波动中分离出来。脉冲微波辐射也被用来研究使用分子磁体作为全息存储量子信息的介质。在进行这项研究的过程中,该团队正在研究这些磁铁与微波辐射场耦合时的基本量子性质。这项研究是在一个以本科生为主的机构进行的,本科生-学者和研究生参与其中。这些研究人员都获得了宝贵的研究技能,这些技能将进一步促进他们在科学和技术领域的职业发展。这一奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jonathan Friedman其他文献

Mandate-based Health Reform and the Labor Market: Evidence from the Massachusetts Reform Mandate-based Health Reform and the Labor Market: Evidence from the Massachusetts Reform *
基于委托的医疗改革和劳动力市场:来自马萨诸塞州改革的证据 基于委托的医疗改革和劳动力市场:来自马萨诸塞州改革的证据 *
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan T Kolstad;Amanda E. Kowalski;Amitabh Chandra;Jonathan Friedman;Ben Handel;Lauren Nichols;Matthew J. Notowidigdo;Hugh Gravelle;Bjoern Bruegemann;Tom Buchmueller;Marika Cabral;Joseph Doyle;Bill Gale;Alex Gelber;Michael Grossman;Martin B. Hackmann;Charles Kolstad;Kory Kroft;Fabian Lange;Amanda Pallais;Mark Pauly;Vincent Pohl;Ebonya L. Washington;Heidi Williams;Clifford Winston
  • 通讯作者:
    Clifford Winston
Investigation of the Post-Pandemic STEM Education (STEM 3.0)
疫情后STEM教育调查(STEM 3.0)
  • DOI:
    10.5281/zenodo.6040002
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Khalid H. Tantawi;Jared Ashcroft;Mel Cossette;Greg Kepner;Jonathan Friedman
  • 通讯作者:
    Jonathan Friedman
House of cards : inside the troubled empire of American Express
纸牌屋:美国运通陷入困境的帝国内部
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Friedman;John D. Meehan
  • 通讯作者:
    John D. Meehan
Considerations for the design of an epipelagic biomimetic electrostatic imaging element
表层仿生静电成像元件设计的考虑因素
Title : Positive interactions are common among culturable bacteria
标题:可培养细菌之间存在积极的相互作用
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jared Kehe;A. Ortiz;Anthony B. Kulesa;J. Gore;P. Blainey;Jonathan Friedman
  • 通讯作者:
    Jonathan Friedman

Jonathan Friedman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jonathan Friedman', 18)}}的其他基金

RUI: Forbidden Transitions and Quantum Dynamics in Molecular Nanomagnets
RUI:分子纳米磁体中的禁止跃迁和量子动力学
  • 批准号:
    1708692
  • 财政年份:
    2017
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
RUI: Probing Quantum Dynamics in Molecular Magnets and Superconducting Devices
RUI:探测分子磁体和超导器件中的量子动力学
  • 批准号:
    1310135
  • 财政年份:
    2013
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
RUI: Macroscopic Quantum Phenomena in Single-Molecule Magnets and Superconducting Devices
RUI:单分子磁体和超导器件中的宏观量子现象
  • 批准号:
    1006519
  • 财政年份:
    2010
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of an Electron-Beam Evaporator for Undergraduate Research
MRI-R2:为本科生研究购买电子束蒸发器
  • 批准号:
    0958900
  • 财政年份:
    2010
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Collaborative Research: High-Time-Resolution Resonance Lidar Detection of Meteor Trails
合作研究:流星轨迹的高时间分辨率共振激光雷达探测
  • 批准号:
    0525621
  • 财政年份:
    2005
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
CAREER: Macroscopic Quantum Phenomena in Nanomagnets and SQUIDs
职业:纳米磁体和 SQUID 中的宏观量子现象
  • 批准号:
    0449516
  • 财政年份:
    2005
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: CEDAR: Daytime Potassium Doppler Lidar at Arecibo
合作研究:CEDAR:阿雷西博的日间钾多普勒激光雷达
  • 批准号:
    0535457
  • 财政年份:
    2005
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Toward Quantum Computing with Molecular Magnets: Studies of Spin Dynamics in a Radiation Field
利用分子磁体进行量子计算:辐射场中自旋动力学的研究
  • 批准号:
    0218469
  • 财政年份:
    2002
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于circA1CF介导Clock乙酰化修饰Bmal1-Lys 537残基探讨调周法 改善卵巢生物钟的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
SE-lncRNA LMAGA协同CLOCK及YAP1促进胃癌亲淋巴结转移机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    15.0 万元
  • 项目类别:
    省市级项目
m6A甲基转移酶METTL3介导气道上皮细胞生物钟基因CLOCK调控哮喘气道炎症的作用机制
  • 批准号:
    82300037
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Bmal1/Clock介导ARs信号通路对肺叶切除术后房颤的影响及针刺干预作用机制
  • 批准号:
    82374451
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
生物钟基因CLOCK介导肝癌相关成纤维细胞Sema3C分泌促进肿瘤进展的机制研究
  • 批准号:
    2023JJ30752
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
生物钟紊乱通过CLOCK驱动AKT脂酰化修饰导致子痫前期的分子机制研究
  • 批准号:
    82371698
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
电针通过SIRT1介导CLOCK-BMAL1环路调节进食节律和能量代谢改善肥胖的机制研究
  • 批准号:
    82305401
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
生物节律转录因子BMAL1::CLOCK对肝癌发生发展的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
生物钟基因Bmal和Clock对番红砗磲行为和生理节律的调控及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
Bmal1和Clock基因介导昼夜节律紊乱在产后抑郁中的作用及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Operating an Optical Atomic Clock Beyond the Laser Coherence and below the Projection Limit
职业:操作超出激光相干性且低于投影极限的光学原子钟
  • 批准号:
    2339487
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Light, temperature and circadian clock signal integration during leaf senescence
叶子衰老过程中的光、温度和生物钟信号整合
  • 批准号:
    BB/X014436/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
Methylation of mRNA as a coupling mechanism between diet, metabolism and the circadian clock.
mRNA 甲基化作为饮食、新陈代谢和生物钟之间的耦合机制。
  • 批准号:
    MR/Y003896/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Fellowship
Ultra-scalable clock and carrier sychronisation for optical and wireless networks using sequentially-locked optical frequency combs
使用顺序锁定光学频率梳实现光学和无线网络的超可扩展时钟和载波同步
  • 批准号:
    10089417
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Collaborative R&D
Light, temperature and circadian clock signal integration during leaf senescence
叶子衰老过程中的光、温度和生物钟信号整合
  • 批准号:
    BB/X014711/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
日本人高齢者におけるepigenetic aging clockとフレイル、術後合併症の関連の検討
日本老年人表观遗传衰老时钟、虚弱和术后并发症之间关系的研究
  • 批准号:
    24K10598
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a novel quality control method for fruits and vegetables by circadian clock approach
通过生物钟方法开发水果和蔬菜的新型质量控制方法
  • 批准号:
    24K09141
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of the circadian clock-based neural mechanism that integrates environmental information and controls seasonal reproduction
基于生物钟的整合环境信息并控制季节繁殖的神经机制分析
  • 批准号:
    23K05848
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of novel strategy for treatment of cancer-evoked pain based on circadian clock machinery
基于生物钟机制开发治疗癌症引起的疼痛的新策略
  • 批准号:
    22KJ2424
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Targeting Circadian Clock Dysfunction in Alzheimer's Disease (TClock4AD)
针对阿尔茨海默氏病的生物钟功能障碍 (TClock4AD)
  • 批准号:
    EP/X030091/1
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了