RUI: Trapped Ion Phononics: Thermal Rectification and Controlled Heat Flow in 1D Ion Chains

RUI:俘获离子声学:一维离子链中的热整流和受控热流

基本信息

  • 批准号:
    2207957
  • 负责人:
  • 金额:
    $ 23.12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Energy flow in the natural world takes many forms: electrical currents, water cascading over a cataract, light arriving from distant stars, or heat leaking into a cooler to ruin one's picnic lunch. Of these, the mechanisms of greatest practical importance for our daily lives are thermal and electrical conduction. A century of technological advances, such as the development of electrical diodes and transistors, have given humanity exquisite control over electrical currents and driven today's information revolution. In contrast, our command of thermal currents - which govern 90% of energy production in the United States - remains in its infancy, yet mastering control over thermal currents could enable applications ranging from thermal logic gates to improved efficiency from photovoltaic power generation. This project focuses on developing a proof-of-principle example of a thermal diode, one of the basic building blocks for controlling thermal currents, using laser-cooled ion chains. Such chains will also enable the study of mesoscopic thermal conductivity at the crossover between quantum and classical regimes, relevant for understanding thermal currents in microscopic devices. The work will take place at an undergraduate institution; students will be involved in all aspects of the experiments and their presentation in journal articles and at scientific conferences, all of which will provide superb training for future careers in the sciences.The central goal of this work will be to demonstrate a two-ion thermal rectifier formed from co-trapped calcium and strontium ions. By coupling the two ions to thermal reservoirs at different effective temperatures formed by laser cooling, a thermal current will flow from the `hot' to the `cold' ions. The thermal current can then be extracted from the ions via laser-based fast thermometry techniques utilizing the ions' dark resonances. The sign of rectification will be an asymmetry in the thermal current under exchange of the reservoirs. Longer dual-species chains with controllably introduced disorder will also enable the study of the onset of thermal gradients across the chain using similar techniques. All of this work will provide research training to a large number of undergraduate students at all stages of their education, with a special emphasis on engaging a diverse group of students early in their undergraduate years.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
自然界中的能量流有多种形式:电流、瀑布上的水流、来自遥远恒星的光,或者泄漏到冷却器中破坏野餐午餐的热量。 其中,对我们日常生活最实际重要的机制是热传导和电传导。 一个世纪以来的技术进步,例如二极管和晶体管的发展,使人类能够精确地控制电流,并推动了当今的信息革命。 相比之下,我们对热流的控制(控制着美国 90% 的能源生产)仍处于起步阶段,但掌握对热流的控制可以实现从热逻辑门到提高光伏发电效率等各种应用。 该项目的重点是开发热二极管的原理验证示例,热二极管是使用激光冷却离子链控制热电流的基本构建模块之一。 这样的链还将能够研究量子和经典体系之间交叉的介观热导率,这与理解微观器件中的热流相关。 这项工作将在本科院校进行;学生将参与实验的各个方面,并在期刊文章和科学会议上发表演讲,所有这些都将为未来的科学职业提供极好的培训。这项工作的中心目标将是展示由共捕获的钙离子和锶离子形成的双离子热整流器。 通过将两个离子耦合到激光冷却形成的不同有效温度的热库,热电流将从“热”离子流向“冷”离子。 然后可以利用离子的暗共振,通过基于激光的快速测温技术从离子中提取热电流。 整流的标志是储层交换下热流的不对称性。 具有可控引入无序性的较长双物种链也将能够使用类似的技术研究整个链上热梯度的开始。 所有这些工作将为大量处于教育各个阶段的本科生提供研究培训,特别强调在本科阶段早期吸引不同群体的学生。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charlie Doret其他文献

Charlie Doret的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charlie Doret', 18)}}的其他基金

RUI: Measuring Nanoscale Thermal Transport with Trapped Ions
RUI:用捕获离子测量纳米级热传输
  • 批准号:
    1707822
  • 财政年份:
    2017
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Continuing Grant

相似国自然基金

粤西海域CTW(Coastal Trapped Wave)特征分析与数值模拟研究
  • 批准号:
    40976012
  • 批准年份:
    2009
  • 资助金额:
    38.0 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Quantum Computing - Trapped ion QPU with integrated photonics
职业:量子计算 - 具有集成光子学的俘获离子 QPU
  • 批准号:
    2338369
  • 财政年份:
    2024
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Continuing Grant
Hybrid ESI/MALDI mass spectrometer with trapped ion mobility spectrometry
具有捕获离子迁移谱分析功能的混合 ESI/MALDI 质谱仪
  • 批准号:
    507957722
  • 财政年份:
    2023
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Major Research Instrumentation
Development of ultra-high-resolution detection and control technique of the cold atoms in optical lattice using a trapped ion
利用捕获离子开发光学晶格中冷原子的超高分辨率探测和控制技术
  • 批准号:
    23K13046
  • 财政年份:
    2023
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Trapped ion clock with enhanced reliability (TICKER)
具有增强可靠性的俘获离子钟 (TICKER)
  • 批准号:
    EP/Y005112/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Research Grant
Advancing 'omics discovery via trapped ion mobility spectrometry
通过俘获离子淌度光谱法推进组学发现
  • 批准号:
    BB/X019519/1
  • 财政年份:
    2023
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Research Grant
Experimental Study of Quantum Jumps with a Single Trapped Ion
单俘获离子量子跃迁的实验研究
  • 批准号:
    2308999
  • 财政年份:
    2023
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Continuing Grant
Trapped Ion Mobility Spectrometry Quadrupole Time-of-Flight System
俘获离子淌度光谱四极杆飞行时间系统
  • 批准号:
    10632999
  • 财政年份:
    2023
  • 资助金额:
    $ 23.12万
  • 项目类别:
Using trapped ion mobility to synchronize ions in data-independent acquisition (DIA) mass spectrometry
在数据独立采集 (DIA) 质谱分析中使用捕获离子淌度同步离子
  • 批准号:
    RGPIN-2019-06833
  • 财政年份:
    2022
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Discovery Grants Program - Individual
Building a programmable trapped ion quantum simulator
构建可编程俘获离子量子模拟器
  • 批准号:
    RGPIN-2018-05250
  • 财政年份:
    2022
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Discovery Grants Program - Individual
INTERCOM: A high-performance ion-photon interface to enable multi-core trapped ion quantum computing
INTERCOM:高性能离子光子接口,可实现多核俘获离子量子计算
  • 批准号:
    10032575
  • 财政年份:
    2022
  • 资助金额:
    $ 23.12万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了