Advancing 'omics discovery via trapped ion mobility spectrometry
通过俘获离子淌度光谱法推进组学发现
基本信息
- 批准号:BB/X019519/1
- 负责人:
- 金额:$ 82.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
To truly appreciate how cells function, we must fully understand the delicate interplay between large macromolecular protein machines and small molecules that modulate their function, biosynthesis or even capturing their short-lived interactions. Among these small molecules are complex branched sugars attached to specific sites on a protein, lipids that specifically interact with proteins that are found on the surface of cells and metabolites that regulate cell homeostasis and signalling pathways. The analysis of these biomolecules is crucial for understanding how chemistry regulates dynamic biological processes as even small changes in a chemical bond can have significant effects in cellular function. However, owing to their inherent structural complexity, this remains a principal challenge in analytical bioscience and consequently we know comparatively little of their biological functions. Another technical challenge is the ability to characterise transient protein interactions, which can be captured using fast reacting crosslinking chemicals that physically attach interacting partners permanently and facilitates their characterisation. Mass spectrometry (MS) is the workhorse for the analysis of these compounds and technical developments in instrumentation are fundamental for progressing our ability to study structure-function relationships and elucidate their roles in cells, tissues and whole organisms. Sydney Brenner famously stated that "Progress in science depends on new techniques, new discoveries and new ideas, probably in that order" and our proposal is founded on this principle. This new mass spectrometer is perfectly suited for the analysis of these biomolecules and offers several advantages over the current state-of-the-art platforms that cannot accurately identify all structures present in a complex sample. One of the key benefits of the instrument is how isomeric structures, which are molecules with the same atomic composition but assembled in different orientations, can be accurately characterised by the separation of their ion species inside the instrument. This mass spectrometer has a proven track record and has been used extensively for studying proteins; here we aim to exploit this technology for the study of oligosaccharides, lipids, metabolites and chemically crosslinked protein fragments.The new instrument will be integrated into our laboratory in the Department of Chemistry in Oxford that is dedicated towards the structural analysis of protein complexes - the new instrument is potentially transformative and will have an immediate impact for our research and that of our collaborators. It will also provide a much-needed resource to BBSRC-funded researchers to undertake experiments in specialised fields which are not widely supported (or even absent) in the UK. As biological discoveries hinges on access to state-of-the-art equipment, we are confident our proposal will support BBSRC's remits and priorities, including transformative technologies and frontier bioscience. This multi-user and interdisciplinary instrument will ring a step-change in the analysis of complex small molecules and in our ability to determine their physiologically relevant functions in health and disease processes.
为了真正了解细胞的功能,我们必须充分了解大分子蛋白质机器和小分子之间的微妙相互作用,这些小分子调节它们的功能,生物合成甚至捕获它们的短暂相互作用。在这些小分子中,有连接到蛋白质特定位点的复杂支链糖,与细胞表面发现的蛋白质特异性相互作用的脂质,以及调节细胞稳态和信号传导途径的代谢物。这些生物分子的分析对于理解化学如何调节动态生物过程至关重要,因为即使是化学键的微小变化也会对细胞功能产生重大影响。然而,由于其固有的结构复杂性,这仍然是分析生物科学的主要挑战,因此我们对其生物功能知之甚少。另一个技术挑战是抑制瞬时蛋白质相互作用的能力,这可以使用快速反应的交联化学品来捕获,所述交联化学品永久地物理连接相互作用的配偶体并促进其表征。质谱(MS)是分析这些化合物的主力,仪器的技术发展是提高我们研究结构-功能关系和阐明它们在细胞、组织和整个生物体中的作用的能力的基础。悉尼·布伦纳(Sydney Brenner)曾说过一句名言:“科学的进步取决于新技术、新发现和新想法,或许是按照这个顺序”,我们的建议就是建立在这一原则之上的。这种新的质谱仪非常适合分析这些生物分子,并提供了几个优势,超过目前最先进的平台,不能准确地识别复杂样品中存在的所有结构。该仪器的主要优点之一是如何通过仪器内离子种类的分离来准确表征异构结构,异构结构是具有相同原子组成但以不同方向组装的分子。这台质谱仪有着良好的记录,被广泛用于研究蛋白质;在这里,我们的目标是利用这项技术来研究寡糖,脂质,代谢物和化学交联的蛋白质片段。新仪器将被集成到我们的实验室在化学系在牛津大学,致力于蛋白质复合物的结构分析-新工具具有潜在的变革性,将对我们和我们合作者的研究产生直接影响。它还将为BBSRC资助的研究人员提供急需的资源,以便在英国没有得到广泛支持(甚至没有)的专业领域进行实验。由于生物学发现取决于获得最先进的设备,我们相信我们的提案将支持BBSRC的使命和优先事项,包括变革性技术和前沿生物科学。这种多用户和跨学科的仪器将使复杂小分子的分析以及我们确定其在健康和疾病过程中的生理相关功能的能力发生重大变化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Weston Struwe其他文献
Weston Struwe的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Weston Struwe', 18)}}的其他基金
Mapping Protein Glycosylation by High-Resolution Single Molecule Imaging
通过高分辨率单分子成像绘制蛋白质糖基化图谱
- 批准号:
BB/W017024/1 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
Research Grant
Visualising Glycoprotein Interaction Dynamics
糖蛋白相互作用动力学可视化
- 批准号:
MR/V02213X/1 - 财政年份:2021
- 资助金额:
$ 82.23万 - 项目类别:
Fellowship
相似海外基金
Centrally-linked longitudinal peripheral biomarkers of AD in multi-ethnic populations
多种族人群中 AD 的中心连锁纵向外周生物标志物
- 批准号:
10555723 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
PROgression of Tuberculosis infECTion in young children living with and without HIV: the PROTECT study
感染和未感染艾滋病毒的幼儿结核感染的进展:PROTECT 研究
- 批准号:
10641389 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
High-throughput in vivo and in vitro functional and multi-omics screens of neuropsychiatric and neurodevelopmental disorder risk genes
神经精神和神经发育障碍风险基因的高通量体内和体外功能和多组学筛选
- 批准号:
10643398 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
Multimodal omics approach to identify health to cardiometabolic disease transitions
多模式组学方法确定健康状况向心脏代谢疾病的转变
- 批准号:
10753664 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
Dark GPCR signaling underlying the Microbiome-Gut-Brain Axis for Alzheimer's Disease and Related Dementia
阿尔茨海默病和相关痴呆症微生物组-肠-脑轴的暗 GPCR 信号传导
- 批准号:
10719150 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
- 批准号:
10737969 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
Ethnically Diverse iPSC-Cardiomyocyte Panel for Pharmacogenomics and Drug Safety Testing
用于药物基因组学和药物安全性测试的种族多样化 iPSC-心肌细胞小组
- 批准号:
10755624 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
2021 Mitochondria in Health and Disease Gordon Research Conference
2021 年线粒体健康与疾病戈登研究会议
- 批准号:
10236763 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:
A multimodal approach for precision immuno-oncoloy in lymphoma treated with CAR-T cells
CAR-T 细胞治疗淋巴瘤的精准免疫肿瘤多模式方法
- 批准号:
10722590 - 财政年份:2023
- 资助金额:
$ 82.23万 - 项目类别:














{{item.name}}会员




