RUI: Measuring Nanoscale Thermal Transport with Trapped Ions

RUI:用捕获离子测量纳米级热传输

基本信息

  • 批准号:
    1707822
  • 负责人:
  • 金额:
    $ 16.65万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2022-08-31
  • 项目状态:
    已结题

项目摘要

The transport of heat via thermal conduction is important for a host of everyday situations ranging from cooking one's dinner or heating and cooling one's home to removing waste heat produced in consumer electronics. Although thermal conductivity is well understood on macroscopic, everyday scales, heat transport on the tiny size scales relevant for today's modern microelectronics - at the crossover between regimes governed by classical versus quantum mechanics - has resisted scientific study. This project, which will simulate nanoscale thermal conductivity using a system of atoms that will be ionized, trapped with electric fields, and probed using lasers, is a step towards understanding heat flow at the crossover between quantum and classical mechanics. Taking place at an undergraduate institution, students will be involved in all aspects of the experiments - designing and building lasers, electronics, and data acquisition systems, writing software, and carrying out data collection, providing superb training for future careers in the sciences.The central idea underpinning this work will be to co-trap multiple isotopes of calcium to create a sympathetically cooled, linear chain of ions. The end ions of the chain will be 44Ca+ ions, laser cooled to different average vibron numbers, analogous to thermal baths of different temperatures. 40Ca+ will form the central `bulk' of the chain. Resolved sideband spectroscopy, individually addressed to specific ions in the chain, will be used to read out the average number of vibrons at each ion, equivalent to a temperature distribution. Under typical circumstances vibron transport along the chain is expected to be ballistic, leading to a near-uniform distribution in the bulk. However, inducing vibron dephasing by introducing localized noise to the trapping potentials or strengthening radial-axial mode coupling across the linear-to-zig-zag structural phase transition will break the chain into thermally disconnected subsystems. This will allow observation of the onset of diffusive thermal transport, manifested as a non-uniform gradient of the average vibron numbers. This work will extend quite naturally to include study of techniques for improving sympathetic cooling of linear ion chains, a central tool for a wide array of experiments pursuing quantum information processing with trapped ions. This research program is thus expected to aid in our understanding of nanoscale thermal conductivity and also to inform the next generation of experiments in trapped ion quantum computation and quantum simulation. Additionally, isotope shift measurements made as part of this work will contribute to the understanding of atomic and nuclear theory.
通过热传导传输热量对于许多日常情况都很重要,从烹饪晚餐或加热和冷却家庭到消除消费电子产品中产生的废热。 尽管在宏观、日常尺度上对热导率有很好的理解,但与当今现代微电子技术相关的微小尺度上的热传输(处于经典力学与量子力学支配的区域之间的交叉点)却阻碍了科学研究。 这个项目将使用一个原子系统来模拟纳米级的热导率,该原子系统将被电离,被电场捕获,并使用激光探测,这是朝着理解量子力学和经典力学之间的交叉处的热流迈出的一步。 学生将参与实验的各个方面-设计和构建激光器,电子学和数据采集系统,编写软件,并进行数据收集,为未来的科学职业提供极好的培训。这项工作的核心思想是共同捕获钙的多种同位素,以创建一个共振冷却的线性离子链。 链的末端离子将是44 Ca+离子,激光冷却到不同的平均振子数,类似于不同温度的热浴。 40 Ca+将形成该链的中心“主体”。 分辨的边带光谱,单独寻址到链中的特定离子,将用于读出每个离子的振动子的平均数,相当于温度分布。 在典型的情况下,振动子沿沿着链的传输预计是弹道式的,从而导致在本体中接近均匀的分布。 然而,诱导振子退相通过引入局部噪声的陷阱电位或加强径向轴向模式耦合的线性到锯齿形结构相变将打破链成热断开的子系统。 这将允许观察扩散热传输的开始,表现为平均振子数的不均匀梯度。 这项工作将很自然地扩展到包括研究用于改善线性离子链的交感冷却的技术,这是一系列广泛的实验的核心工具,这些实验追求用捕获的离子进行量子信息处理。 因此,这项研究计划预计将有助于我们理解纳米热导率,并为下一代囚禁离子量子计算和量子模拟实验提供信息。 此外,作为这项工作的一部分,同位素位移测量将有助于理解原子和核理论。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Part-per-billion measurement of the 42S1/2→32D5/2 electric-quadrupole-transition isotope shifts between Ca+42,44,48 and Ca+40
42S1/2–32D5/2 电四极跃迁同位素在 Ca 42、44、48 和 Ca 40 之间移动的十亿分之一测量
  • DOI:
    10.1103/physreva.100.022514
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Knollmann, Felix W.;Patel, Ashay N.;Doret, S. Charles
  • 通讯作者:
    Doret, S. Charles
Simple, low-noise piezo driver with feed-forward for broad tuning of external cavity diode lasers
简单、低噪声压电驱动器,具有前馈,可广泛调谐外腔二极管激光器
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Charlie Doret其他文献

Charlie Doret的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Charlie Doret', 18)}}的其他基金

RUI: Trapped Ion Phononics: Thermal Rectification and Controlled Heat Flow in 1D Ion Chains
RUI:俘获离子声学:一维离子链中的热整流和受控热流
  • 批准号:
    2207957
  • 财政年份:
    2022
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant

相似海外基金

Optical fibre monitoring and measuring systems from the nanoscale to the human scale
从纳米尺度到人体尺度的光纤监控和测量系统
  • 批准号:
    RGPIN-2019-06255
  • 财政年份:
    2022
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Discovery Grants Program - Individual
Measuring thermodynamic quantities at the nanoscale
测量纳米尺度的热力学量
  • 批准号:
    2594914
  • 财政年份:
    2021
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Studentship
Optical fibre monitoring and measuring systems from the nanoscale to the human scale
从纳米尺度到人体尺度的光纤监控和测量系统
  • 批准号:
    RGPIN-2019-06255
  • 财政年份:
    2021
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Discovery Grants Program - Individual
Measuring Nanoscale Exciton Motion & Annihilation in Single Molecules with Photon Statistics
测量纳米级激子运动
  • 批准号:
    EP/V004921/1
  • 财政年份:
    2021
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Research Grant
EAGER: Measuring and controlling nanoscale interactions in biomatter via quantum degrees of freedom
EAGER:通过量子自由度测量和控制生物物质中的纳米级相互作用
  • 批准号:
    2041158
  • 财政年份:
    2021
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
Optical fibre monitoring and measuring systems from the nanoscale to the human scale
从纳米尺度到人体尺度的光纤监控和测量系统
  • 批准号:
    RGPIN-2019-06255
  • 财政年份:
    2020
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Discovery Grants Program - Individual
Measuring mass transport fluctuations at the nanoscale
测量纳米尺度的质量传递波动
  • 批准号:
    552302-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 16.65万
  • 项目类别:
    University Undergraduate Student Research Awards
Optical fibre monitoring and measuring systems from the nanoscale to the human scale
从纳米尺度到人体尺度的光纤监控和测量系统
  • 批准号:
    RGPIN-2019-06255
  • 财政年份:
    2019
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Discovery Grants Program - Individual
GOALI: Visualizing and Measuring Nanoscale Properties through Multi-spectral Atomic Force Microscopy for the Design and Discovery of Novel Materials
GOALI:通过多光谱原子力显微镜可视化和测量纳米级特性,用于新型材料的设计和发现
  • 批准号:
    1726274
  • 财政年份:
    2017
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Standard Grant
Development of thermo-sensitive fluorescent nanoprobe capable of measuring cell internal temperature at nanoscale and construction of evaluation system
纳米尺度测量细胞内部温度的热敏荧光纳米探针的研制及评价体系的构建
  • 批准号:
    15K12541
  • 财政年份:
    2015
  • 资助金额:
    $ 16.65万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了