Collaborative Research: AF: Small: Promoting Social Learning Amid Interference in the Age of Social Media
合作研究:AF:小:在社交媒体时代的干扰下促进社交学习
基本信息
- 批准号:2208662
- 负责人:
- 金额:$ 26.94万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Information acquisition is embedded in a social setting. This distorts - or at least changes - the incentives individuals face when they are uncertain about the truth and communicate with others. Social learning, an increasingly impactful topic in the computer science/economics literature, formally studies when and how dispersed and self-interested agents aggregate information. A potential, but unrealized, goal of the social-learning literature is to enable the building of socio-computational systems that promote social learning. A growing volume of literature in social media and computational social science is deeply concerned that, at present, incentives are not aligned with truth-seeking/truth-telling and that discussion is becoming increasingly polarized. This leads to an acrimonious public discourse rife with conflicting information and theories, where the truth is hard to locate. Building on and using theoretical computer science techniques, this project adds to the fundamental understanding of how societies learn. The social learning system itself, with given parameters, can be seen as a computational process. This project considers two interesting perspectives in this family of problems that involve computational complexity and algorithm design: 1) the computational complexity required for agents to best respond or to determine the properties of different systems; 2) considering social learning as a complex system where the models of social interactions, input signals, and self-regulating/evolving nature can be viewed as constraints, and the design parameters can be optimized to encourage social learning towards truth discovery. This work includes the analysis of models with relevant first-order features to learn which conditions are sufficient and necessary for crowds to quickly and reliably converge on the truth in both the sequential social learning and social learning with repeated updating settings. In addition, the project includes design of algorithms and insights to optimize certain parameters, corresponding to platform design choices, to promote fast and robust social learning in each of these settings. A key feature is augmenting the social-learning literature to explicitly consider agents' social embeddedness including their mixed incentives and the reality of polarized environments. Additionally, with carefully crafted empirical research, the project develops models for learning more complex truths amid social pressure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
信息获取是在社会环境中进行的。 这扭曲了--或者至少改变了--个体在不确定真相和与他人交流时所面临的激励。社会学习是计算机科学/经济学文献中一个越来越有影响力的主题,它正式研究分散和自私的代理人何时以及如何聚合信息。社会学习文献的一个潜在但尚未实现的目标是建立促进社会学习的社会计算系统。越来越多的社交媒体和计算社会科学文献深感关切的是,目前,激励措施与寻求真相/讲真话不一致,讨论正变得越来越两极分化。 这导致了一个充满相互矛盾的信息和理论的尖刻的公共话语,真相很难找到。该项目以理论计算机科学技术为基础,增加了对社会学习方式的基本理解。在给定参数的情况下,社会学习系统本身可以被视为一个计算过程。这个项目考虑了这个涉及计算复杂性和算法设计的问题家族中的两个有趣的观点:1)代理最佳响应或确定不同系统的属性所需的计算复杂性; 2)将社会学习视为一个复杂的系统,其中社会互动,输入信号和自我调节/进化性质的模型可以被视为约束,并且设计参数可以被优化以鼓励朝向真理发现的社会学习。 这项工作包括分析具有相关一阶特征的模型,以了解群体在顺序社会学习和具有重复更新设置的社会学习中快速可靠地收敛于真理的充分和必要条件。此外,该项目还包括算法和见解的设计,以优化某些参数,对应于平台设计选择,以促进在这些设置中的每一个快速和强大的社会学习。 一个关键特征是增加社会学习文献,明确考虑代理人的社会嵌入性,包括他们的混合激励和极化环境的现实。 此外,通过精心设计的实证研究,该项目开发了在社会压力下学习更复杂真理的模型。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Grant Schoenebeck其他文献
拡張Rossler方程式に基づく交代型カオス同期を用いた暗号鍵配送
基于扩展罗斯勒方程的交替混沌同步的密钥分配
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Xingjun Ma;Bo Li;Yisen Wang;Sarah M. Erfani;Sudanthi N. R. Wijewickrema;Grant Schoenebeck;Dawn Song;Michael E. Houle;James Bailey;大西真史,深津祐貴,大抜倖司朗,宮野尚哉 - 通讯作者:
大西真史,深津祐貴,大抜倖司朗,宮野尚哉
Eliciting Honest Information From Authors Using Sequential Review
使用顺序审查从作者那里获取诚实的信息
- DOI:
10.48550/arxiv.2311.14619 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Yichi Zhang;Grant Schoenebeck;Weijie Su - 通讯作者:
Weijie Su
A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover
顶点覆盖Lovasz-Schrijver SDP松弛的线性圆下界
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Grant Schoenebeck;Luca Trevisan;Madhur Tulsiani - 通讯作者:
Madhur Tulsiani
Eliciting Informative Text Evaluations with Large Language Models
使用大型语言模型进行信息丰富的文本评估
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Yuxuan Lu;Shengwei Xu;Yichi Zhang;Yuqing Kong;Grant Schoenebeck - 通讯作者:
Grant Schoenebeck
Spot Check Equivalence: an Interpretable Metric for Information Elicitation Mechanisms
抽查等价性:信息获取机制的可解释指标
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Shengwei Xu;Yichi Zhang;Paul Resnick;Grant Schoenebeck - 通讯作者:
Grant Schoenebeck
Grant Schoenebeck的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Grant Schoenebeck', 18)}}的其他基金
Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
- 批准号:
2313137 - 财政年份:2023
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
AF:Small:Unifying Information Aggregation and Information Elicitation
AF:Small:统一信息聚合和信息获取
- 批准号:
2007256 - 财政年份:2020
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
AF: Small: Eliciting Accurate and Useful Information from Heterogeneous Agents
AF:小:从异构代理中获取准确有用的信息
- 批准号:
1618187 - 财政年份:2016
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
AitF: Full: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
- 批准号:
1535912 - 财政年份:2015
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
CAREER: Social Networks - Processes, Structures, and Algorithms
职业:社交网络 - 流程、结构和算法
- 批准号:
1452915 - 财政年份:2015
- 资助金额:
$ 26.94万 - 项目类别:
Continuing Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: AF: Medium: The Communication Cost of Distributed Computation
合作研究:AF:媒介:分布式计算的通信成本
- 批准号:
2402836 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: New Directions in Algorithmic Replicability
合作研究:AF:小:算法可复制性的新方向
- 批准号:
2342244 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
NSF-BSF: Collaborative Research: AF: Small: Algorithmic Performance through History Independence
NSF-BSF:协作研究:AF:小型:通过历史独立性实现算法性能
- 批准号:
2420942 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Algorithms Meet Machine Learning: Mitigating Uncertainty in Optimization
协作研究:AF:媒介:算法遇见机器学习:减轻优化中的不确定性
- 批准号:
2422926 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Continuing Grant
Collaborative Research: AF: Small: Structural Graph Algorithms via General Frameworks
合作研究:AF:小型:通过通用框架的结构图算法
- 批准号:
2347322 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331401 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Small: Real Solutions of Polynomial Systems
合作研究:AF:小:多项式系统的实数解
- 批准号:
2331400 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Standard Grant
Collaborative Research: AF: Medium: Fast Combinatorial Algorithms for (Dynamic) Matchings and Shortest Paths
合作研究:AF:中:(动态)匹配和最短路径的快速组合算法
- 批准号:
2402283 - 财政年份:2024
- 资助金额:
$ 26.94万 - 项目类别:
Continuing Grant