AitF: Full: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks

AitF:完整:协作研究:建模和理解社交网络中的复杂影响

基本信息

项目摘要

Information, beliefs, diseases, technologies, and behaviors propagate through social interactions as a contagion. Understanding of how these contagions spread is crucial in encouraging beneficial and healthy behaviors and discouraging the ones that are destructive and damaging. Rigorous, mathematical understanding of complex social contagions is not just an abstraction, but will guide applications from healthcare to word-of-mouth advertising. The technical content of this project is inherently interdisciplinary, and its lessons will apply to related fields such as probability, economics, sociology, and statistical physics. The research efforts are integrated with the educational and outreach activities of the PIs, who have strong records of broadly disseminating cutting-edge research to high school, undergraduate, and graduate students through teaching, outreach programs, and personal mentoring. This project will transform our understanding of social contagions by: 1) Developing a suite of technical tools to enable improved understanding of specific complex processes; 2) Determining how various parameters of cascade and social structure together impact the chances of a cascade's success or failure; and 3) Obtaining empirical evidence to both corroborate the theoretical findings, and uncover the space of realistic setting for certain parameters. Many existing models of contagion assume that increasing the number of infected (or affected) neighbors marginally decreases the chance of infection. Many contagions, such as adoption of expensive new technology, fail to have this property, but instead have more complex rules for infection. This leads to different spreading behaviors even on the same networks. Motivated by sociology research findings, this project will greatly enhance our understanding of social contagions in three aspects. First this project will provide rigorous study of the spreading behavior of a simplified theoretical model called k-complex contagions and its interactions with structures in the underlying graph such as tie strength, unusually influential nodes, and community structures. Second, this project presents a general model for studying cascades that is both theoretically tractable and practically motivated. The general model generalizes most previous theoretical models of complex and simple contagions and includes homophily and environmental factors on cascades. Finally, this project will use post-hoc analysis as well as real world social experiments to verify the veracity of the model and fit the parameters in different settings.
信息、信仰、疾病、技术和行为以传染病的形式通过社会互动传播。了解这些传染是如何传播的,对于鼓励有益和健康的行为,阻止破坏性和破坏性的行为至关重要。对复杂的社会传染进行严格的数学理解不仅仅是一种抽象,而且将指导从医疗保健到口碑广告的应用。本项目的技术内容本质上是跨学科的,其经验教训将适用于相关领域,如概率论、经济学、社会学和统计物理学。研究工作与pi的教育和推广活动相结合,pi在通过教学、推广项目和个人指导向高中、本科生和研究生广泛传播前沿研究方面有着良好的记录。该项目将通过以下方式改变我们对社会传染的理解:1)开发一套技术工具,以提高对特定复杂过程的理解;2)确定级联的各种参数和社会结构如何共同影响级联成功或失败的机会;3)获得经验证据,既可以证实理论发现,又可以揭示某些参数的现实设置空间。许多现有的传染模型假设,增加受感染(或受影响)邻居的数量,会略微降低感染的机会。许多传染病,例如采用昂贵的新技术,没有这种特性,而是有更复杂的感染规则。这就导致了即使在相同的网络中,传播行为也是不同的。在社会学研究成果的推动下,本项目将从三个方面大大增强我们对社会传染的理解。首先,该项目将对一个被称为k-复传染的简化理论模型的传播行为及其与基础图中的结构(如纽带强度、异常影响节点和社区结构)的相互作用进行严格研究。其次,该项目提出了一个研究级联的一般模型,该模型在理论上易于处理,并且具有实践动机。一般模型概括了大多数先前的复杂和简单传染的理论模型,并包括级联上的同质性和环境因素。最后,本项目将使用事后分析以及现实世界的社会实验来验证模型的准确性,并在不同的设置中拟合参数。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Grant Schoenebeck其他文献

拡張Rossler方程式に基づく交代型カオス同期を用いた暗号鍵配送
基于扩展罗斯勒方程的交替混沌同步的密钥分配
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xingjun Ma;Bo Li;Yisen Wang;Sarah M. Erfani;Sudanthi N. R. Wijewickrema;Grant Schoenebeck;Dawn Song;Michael E. Houle;James Bailey;大西真史,深津祐貴,大抜倖司朗,宮野尚哉
  • 通讯作者:
    大西真史,深津祐貴,大抜倖司朗,宮野尚哉
Eliciting Honest Information From Authors Using Sequential Review
使用顺序审查从作者那里获取诚实的信息
  • DOI:
    10.48550/arxiv.2311.14619
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yichi Zhang;Grant Schoenebeck;Weijie Su
  • 通讯作者:
    Weijie Su
A Linear Round Lower Bound for Lovasz-Schrijver SDP Relaxations of Vertex Cover
顶点覆盖Lovasz-Schrijver SDP松弛的线性圆下界
Eliciting Informative Text Evaluations with Large Language Models
使用大型语言模型进行信息丰富的文本评估
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuxuan Lu;Shengwei Xu;Yichi Zhang;Yuqing Kong;Grant Schoenebeck
  • 通讯作者:
    Grant Schoenebeck
Spot Check Equivalence: an Interpretable Metric for Information Elicitation Mechanisms
抽查等价性:信息获取机制的可解释指标
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shengwei Xu;Yichi Zhang;Paul Resnick;Grant Schoenebeck
  • 通讯作者:
    Grant Schoenebeck

Grant Schoenebeck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Grant Schoenebeck', 18)}}的其他基金

Collaborative Research: RI: Medium: Informed, Fair, Efficient, and Incentive-Aware Group Decision Making
协作研究:RI:媒介:知情、公平、高效和具有激励意识的群体决策
  • 批准号:
    2313137
  • 财政年份:
    2023
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Promoting Social Learning Amid Interference in the Age of Social Media
合作研究:AF:小:在社交媒体时代的干扰下促进社交学习
  • 批准号:
    2208662
  • 财政年份:
    2022
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AF:Small:Unifying Information Aggregation and Information Elicitation
AF:Small:统一信息聚合和信息获取
  • 批准号:
    2007256
  • 财政年份:
    2020
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AF: Small: Eliciting Accurate and Useful Information from Heterogeneous Agents
AF:小:从异构代理中获取准确有用的信息
  • 批准号:
    1618187
  • 财政年份:
    2016
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
CAREER: Social Networks - Processes, Structures, and Algorithms
职业:社交网络 - 流程、结构和算法
  • 批准号:
    1452915
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Continuing Grant

相似国自然基金

钴基Full-Heusler合金的掺杂效应和薄膜噪声特性研究
  • 批准号:
    51871067
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1723379
  • 财政年份:
    2016
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Better Hashing for Applications: From Nuts & Bolts to Asymptotics
AitF:完整:协作研究:更好的应用程序哈希:来自坚果
  • 批准号:
    1535795
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
  • 批准号:
    1535977
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1536003
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Optimizing Networked Systems with Limited Information
AitF:完整:协作研究:利用有限信息优化网络系统
  • 批准号:
    1535972
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AitF: Full: Collaborative Research: Graph-theoretic algorithms to improve phylogenomic analyses
AitF:完整:协作研究:改进系统发育分析的图论算法
  • 批准号:
    1535989
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: PEARL: Perceptual Adaptive Representation Learning in the Wild
AitF:FULL:协作研究:PEARL:野外感知自适应表示学习
  • 批准号:
    1535797
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Compact Data Structures for Traffic Measurement in Software-Defined Networks
AitF:完整:协作研究:软件定义网络中流量测量的紧凑数据结构
  • 批准号:
    1535878
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Modeling and Understanding Complex Influence in Social Networks
AitF:完整:协作研究:建模和理解社交网络中的复杂影响
  • 批准号:
    1535900
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
AitF: FULL: Collaborative Research: Practical Foundations for Software-Defined Network Optimization
AitF:完整:协作研究:软件定义网络优化的实践基础
  • 批准号:
    1535917
  • 财政年份:
    2015
  • 资助金额:
    $ 36.32万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了