Zwitterion-Decorated Silica Nanoparticle Networks in Ionic Liquid Electrolytes

离子液体电解质中两性离子修饰的二氧化硅纳米颗粒网络

基本信息

  • 批准号:
    2209500
  • 负责人:
  • 金额:
    $ 36.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Part 1: Non-technical SummarySafe, reliable batteries are critically needed for future mobile devices and wearable electronics. Both lithium and sodium ion-based batteries can provide high operating voltages and large energy densities, but many of the ion-transporting electrolyte materials used today are flammable and may present a safety hazard if the battery fails. A class of room temperature molten salts, known as ionic liquids, can eliminate flammability concerns, but a fundamental challenge remains in how to promote the selective motion of the targeted cations (Li+, Na+) over that of the other ions also present in the electrolyte. This project, supported by the Solid State and Materials Chemistry program and the Polymer program in the Division of Materials Research at NSF, aims to address this challenge by creating inorganic oxide materials that are coated with zwitterionic chemical groups. Zwitterionic groups contain an equal number of both positively- and negatively-charged atoms, separated by a distance of just a few bond lengths, which are known to interact strongly with electrolyte ions as well as with one another. This project tests the hypothesis that zwitterion-decorated oxide nanoparticle networks can selectively enhance Li+ and Na+ transport in ionic liquid-based electrolytes. The research generate needed insights into the design of safer future battery electrolytes and reveal new fundamental information about zwitterion-ion interactions in nonaqueous, ion-dense electrolytes. A new K-12 outreach activity is also developed as part of this project. The activity will inform pre-college students about future energy storage technologies, connect them to the research findings of this study, and foster their interest in pursuing a career in science or engineering.Part 2: Technical SummaryThe primary objective of this project is to selectively enhance the transport of Li+ and Na+ ions within ionic liquid electrolytes using organic zwitterionic (ZI) functional group-decorated silica nanostructured networks. Two different manifestations of this unique materials class will be pursued: (1) ZI group-decorated oxide nanoparticles (ZIONs), and (2) ZI group-functionalized mesoporous oxide networks (zwitterionosilicas). A key hypothesis of this study is that ZI group-functionalized silica nanostructures assembled into a continuous three-dimensional network within an ionic liquid electrolyte can enable a substantial improvement in selective alkali metal cation transport (Li+ or Na+) compared to that in the liquid electrolyte itself, while also creating a robust composite gel electrolyte layer that can prevent leakage. By spatially defining the region of ZI group/alkali metal cation interaction to be located along the exposed surfaces of the ZIONs or zwitterionosilicas, it is posited that this approach can effectively maximize the ability of ZI units to enhance Li+/Na+ conductivity within these inherently safer electrolytes. This project, funded by the Solid State and Materials Chemistry program and the Polymer program in the Division of Materials Research at NSF, encompasses the synthesis of ZIONs and zwitterionosilicas featuring different ZI chemistries and the measurement of relevant ion transport metrics for their combinations with ionic liquid electrolytes. Additionally, the work provides mentored undergraduate and graduate research experiences for a diverse group of students, supporting their goals of future employment in U.S. industrial research and development, academia, and national laboratories.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
第1部分:非技术摘要未来的移动的设备和可穿戴电子产品迫切需要安全可靠的电池。锂离子电池和钠离子电池都可以提供高工作电压和大能量密度,但目前使用的许多离子传输电解质材料都是易燃的,如果电池出现故障,可能会带来安全隐患。一类室温熔盐(称为离子液体)可以消除易燃性问题,但根本挑战仍然是如何促进目标阳离子(Li+、Na+)相对于也存在于电解质中的其他离子的选择性运动。该项目由NSF材料研究部的固态和材料化学计划以及聚合物计划支持,旨在通过创建涂覆有两性离子化学基团的无机氧化物材料来应对这一挑战。两性离子基团含有相等数量的带正电荷和带负电荷的原子,它们之间的距离仅为几个键长,已知它们与电解质离子以及彼此之间强烈相互作用。该项目测试了两性离子修饰的氧化物纳米颗粒网络可以选择性地增强基于离子液体的电解质中的Li+和Na+传输的假设。该研究为设计更安全的未来电池电解质提供了必要的见解,并揭示了有关非水离子密集电解质中两性离子相互作用的新的基本信息。作为该项目的一部分,还制定了一项新的K-12外联活动。该活动将向大学预科学生介绍未来的储能技术,将他们与本研究的研究成果联系起来,并培养他们从事科学或工程职业的兴趣。技术概述本项目的主要目标是使用有机两性离子(ZI)官能团选择性地增强Li+和Na+离子在离子液体电解质中的传输。修饰的二氧化硅纳米结构网络。这一独特材料类别的两种不同表现形式将被追求:(1)ZI基团修饰的氧化物纳米颗粒(ZION),和(2)ZI基团官能化的介孔氧化物网络(两性二氧化硅)。本研究的一个关键假设是,与液体电解质本身相比,在离子液体电解质内组装成连续三维网络的ZI基团官能化的二氧化硅纳米结构可以使选择性碱金属阳离子传输(Li+或Na+)得到实质性改善,同时还产生了可以防止泄漏的坚固的复合凝胶电解质层。通过在空间上限定ZI基团/碱金属阳离子相互作用的区域,使其沿着ZION或两性离子二氧化硅的暴露表面定位,假定该方法可以有效地最大化ZI单元增强这些固有更安全的电解质内的Li+/Na+电导率的能力。该项目由NSF材料研究部的固态和材料化学计划以及聚合物计划资助,包括合成具有不同ZI化学性质的ZION和两性离子二氧化硅,以及测量其与离子液体电解质组合的相关离子传输指标。此外,这项工作为不同群体的学生提供了指导性的本科生和研究生研究经验,支持他们未来在美国工业研究和发展,学术界和国家实验室就业的目标。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Panzer其他文献

Matthew Panzer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Panzer', 18)}}的其他基金

Zwitterionic polymer-based electrolyte engineering for alkali metal ion batteries
用于碱金属离子电池的两性离子聚合物电解质工程
  • 批准号:
    2217188
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Nonvolatile Gel Electrolytes for Safer Lithium Ion Batteries
用于更安全锂离子电池的非挥发性凝胶电解质
  • 批准号:
    1802729
  • 财政年份:
    2018
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Solid Ionogel Electrolytes for Flexible Charge Storage Applications
用于灵活电荷存储应用的固体离子凝胶电解质
  • 批准号:
    1201935
  • 财政年份:
    2012
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Continuing Grant

相似海外基金

Development of Metal Nanoparticle Catalysts Decorated by Inorganic Monolayer Nanosheets and Its Application for Green Chemical Processes
无机单层纳米片修饰金属纳米粒子催化剂的研制及其在绿色化工过程中的应用
  • 批准号:
    23H02005
  • 财政年份:
    2023
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Probing the nanomechanics of single grain boundary with decorated solutes
用修饰溶质探测单晶界的纳米力学
  • 批准号:
    DE200101105
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Discovery Early Career Researcher Award
Flexible Peptide Decorated Polyaminocarboxylate Ligands for Selective Extraction of Radiotherapeutic Metals for Targeted Alpha Cancer Therapy
用于选择性提取放射治疗金属以用于靶向α癌症治疗的柔性肽修饰的聚氨基羧酸盐配体
  • 批准号:
    2786514
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Studentship
Cluster Algebras, Quantum Groups, and Decorated Character Varieties
簇代数、量子群和修饰字符簇
  • 批准号:
    2200738
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Standard Grant
Refinement of DNA-Launched NanoParticles decorated with Apex and CD4bs B cell lineage targeting Envs (DLNP-ACEs)
用 Apex 和 CD4bs B 细胞谱系靶向 Envs (DLNP-ACE) 修饰的 DNA 启动纳米粒子的精制
  • 批准号:
    10589588
  • 财政年份:
    2022
  • 资助金额:
    $ 36.94万
  • 项目类别:
Engineering of hyaluronan-decorated hybrid lipid/polymer nanoparticles for the dual delivery of miR-181a and temozolomide for the treatment of glioblastoma.
透明质酸修饰的杂化脂质/聚合物纳米颗粒的工程设计,用于双重递送 miR-181a 和替莫唑胺来治疗胶质母细胞瘤。
  • 批准号:
    457631
  • 财政年份:
    2021
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Studentship Programs
Construction of colloidal crystals with simple cubic lattice by precisely designed polymer-brush-decorated hybrid particles
通过精确设计的聚合物刷装饰杂化粒子构建简单立方晶格的胶体晶体
  • 批准号:
    21H02000
  • 财政年份:
    2021
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Peptide decorated magnetic nanoparticle strategies for minimally invasive targeting and removing exfoliation materials from the anterior lens capsule
用于微创靶向和去除晶状体前囊剥落材料的肽修饰磁性纳米颗粒策略
  • 批准号:
    444974
  • 财政年份:
    2021
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Operating Grants
A Mannose 6-Phosphate Decorated Transformable Nanoplatform for Targeted Uptake in HER2+ Tumors
用于 HER2 肿瘤靶向摄取的甘露糖 6-磷酸盐修饰的可转化纳米平台
  • 批准号:
    10381225
  • 财政年份:
    2021
  • 资助金额:
    $ 36.94万
  • 项目类别:
Activation of mononuclear phagocytes by phagocytosis of carbohydrate-decorated particles
通过吞噬碳水化合物修饰的颗粒来激活单核吞噬细胞
  • 批准号:
    20K07542
  • 财政年份:
    2020
  • 资助金额:
    $ 36.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了