Cluster Algebras, Quantum Groups, and Decorated Character Varieties
簇代数、量子群和修饰字符簇
基本信息
- 批准号:2200738
- 负责人:
- 金额:$ 16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The research project lies at the crossroads of algebra and geometry. A particular focus is on the theory of cluster algebras and moduli spaces. Cluster algebras, discovered by Fomin and Zelevinsky in 2001, are a class of algebras associated with integer skew-symmetric matrices. Since its inception, the rapid developments of cluster theory have found tremendous interactions with many different areas of mathematics and physics, including representation theory, knot theory, and high energy physics. Moduli spaces are geometric spaces that classify objects of some fixed shapes or solutions to specific systems in physics. This project will explore the connections between moduli spaces and cluster algebras to further their understanding and build parallels between the different areas. In addition, the PI will mentor undergraduate research projects, train graduate students, and support a research seminar. This project will investigate the quantum geometry of moduli spaces under the framework of cluster algebras. It also explores the fruitful connections between decorated character varieties, quantum groups, and Legendrian knots, finding new results in all directions. In more detail, the project will touch on four topics. (1) It will provide a rigid cluster model realizing quantum groups, obtaining new interpretations of many properties of quantum groups from the perspective of cluster algebras. (2) It will study the natural bases of the quantized decorated character varieties, including a concrete diagrammatic construction of web bases. (3) It will explore an intrinsic correspondence between the exact Lagrangian fillings of Legendrian knots and the cluster seeds of their augmentation varieties. As an application, it will solve the infinite-filling problem for Legendrian knots beyond positive braids. (4) It will use tools from Legendrian knot theory to introduce a cluster structure on generalized Richardson varieties, confirming a conjecture of Leclerc on the cluster nature of open Richardson varieties.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项研究项目处于代数和几何的十字路口。一个特别的焦点是簇代数和模空间的理论。簇代数是由Fomin和Zlevinsky于2001年发现的一类与整数反对称矩阵相关的代数。自诞生以来,团簇理论的快速发展已经与数学和物理的许多不同领域产生了巨大的相互作用,包括表象理论、纽结理论和高能物理。模空间是将某些固定形状的对象或物理中特定系统的解分类的几何空间。这个项目将探索模空间和簇代数之间的联系,以加深他们的理解,并在不同领域之间建立相似之处。此外,PI将指导本科生研究项目,培训研究生,并支持一次研究研讨会。本项目将在簇代数的框架下研究模空间的量子几何。它还探索了装饰角色种类、量子群和传奇结之间的丰富联系,在各个方向都找到了新的结果。更详细地说,该项目将涉及四个主题。(1)提供了一个实现量子群的刚性团簇模型,从团簇代数的角度对量子群的许多性质有了新的解释。(2)研究量化装饰字品种的自然基础,包括具体的网库结构图。(3)探索Legendrian纽结的精确拉格朗日填充与其增强变种的簇种之间的内在对应关系。作为应用,它将解决正辫子以外的传奇结的无限填充问题。(4)它将使用Legendrian纽结理论的工具在广义Richardson品种上引入集群结构,证实Leclerc关于开放Richardson品种集群性质的猜想。这一奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Linhui Shen其他文献
Gallstones, cholecystectomy, and cancer risk: an observational and Mendelian randomization study
胆结石、胆囊切除术与癌症风险:一项观察性研究和孟德尔随机化研究
- DOI:
10.1007/s11684-024-1111-5 - 发表时间:
2024-12-26 - 期刊:
- 影响因子:3.500
- 作者:
Yuanyue Zhu;Linhui Shen;Yanan Huo;Qin Wan;Yingfen Qin;Ruying Hu;Lixin Shi;Qing Su;Xuefeng Yu;Li Yan;Guijun Qin;Xulei Tang;Gang Chen;Yu Xu;Tiange Wang;Zhiyun Zhao;Zhengnan Gao;Guixia Wang;Feixia Shen;Xuejiang Gu;Zuojie Luo;Li Chen;Qiang Li;Zhen Ye;Yinfei Zhang;Chao Liu;Youmin Wang;Shengli Wu;Tao Yang;Huacong Deng;Lulu Chen;Tianshu Zeng;Jiajun Zhao;Yiming Mu;Weiqing Wang;Guang Ning;Jieli Lu;Min Xu;Yufang Bi;Weiguo Hu - 通讯作者:
Weiguo Hu
Intersections of Dual $SL_3$-Webs
双 $SL_3$-腹板的交叉点
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Linhui Shen;Zhe Sun;Daping Weng - 通讯作者:
Daping Weng
math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg" class="math"mi mathvariant="script"A/mimo linebreak="goodbreak" linebreakstyle="after"=/momi mathvariant="script"U/mi/math for cluster algebras from moduli spaces of emG/em-local systems
从 emG/em 局部系统的模空间到簇代数的数学
- DOI:
10.1016/j.aim.2023.109256 - 发表时间:
2023-10-15 - 期刊:
- 影响因子:1.500
- 作者:
Tsukasa Ishibashi;Hironori Oya;Linhui Shen - 通讯作者:
Linhui Shen
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">A</mml:mi><mml:mo linebreak="goodbreak" linebreakstyle="after">=</mml:mo><mml:mi mathvariant="script">U</mml:mi></mml:math> for cluster algebras from moduli spaces of G-local systems
<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si1.svg"><mml:mi mathvariant="script">A</mml:mi>
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.7
- 作者:
Tsukasa Ishibashi;Hironori Oya;Linhui Shen - 通讯作者:
Linhui Shen
Donaldson–Thomas transformations of moduli spaces of G-local systems
- DOI:
10.1016/j.aim.2017.06.017 - 发表时间:
2018-03-17 - 期刊:
- 影响因子:
- 作者:
Alexander Goncharov;Linhui Shen - 通讯作者:
Linhui Shen
Linhui Shen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
- 批准号:
2401351 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
- 批准号:
2348843 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Quantum algebras with supersymmetries
具有超对称性的量子代数
- 批准号:
DP240101572 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Discovery Projects
Operator algebras and index theory in quantum walks and quantum information theory
量子行走和量子信息论中的算子代数和索引论
- 批准号:
24K06756 - 财政年份:2024
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric Representations of the Elliptic Quantum Toroidal Algebras
椭圆量子环形代数的几何表示
- 批准号:
23K03029 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantum singularity and non-linear positive maps on operator algebras
算子代数上的量子奇点和非线性正映射
- 批准号:
23K03151 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Similarities in representation theory of quantum loop algebras of several types and their developments
几种量子环代数表示论的相似性及其发展
- 批准号:
23K12950 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Higher skein algebras and quantum cluster algebras of surfaces
表面的高等绞纱代数和量子簇代数
- 批准号:
23K12972 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
KMS States of Quantum Cuntz-Krieger Algebras
量子 Cuntz-Krieger 代数的 KMS 态
- 批准号:
2247587 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant
Quivers in quantum symmetry: a path algebra framework for algebras in tensor categories
量子对称性中的颤动:张量范畴代数的路径代数框架
- 批准号:
2303334 - 财政年份:2023
- 资助金额:
$ 16万 - 项目类别:
Standard Grant