Elements: Scalable Bayesian Software for Interpreting Astronomical Images
Elements:用于解释天文图像的可扩展贝叶斯软件
基本信息
- 批准号:2209720
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The BLISS (Bayesian Light Source Separator) Project is an interdisciplinary research effort to develop a software tool that allows astronomers to make use of the latest advances in machine learning. By harnessing these advances, astronomers can rapidly analyze vast quantities of complex data to understand the nature of our universe. This project also engages and educates a wider audience through a workshop series that promotes technical proficiency in software development and machine learning.The software tool, developed as part of this project, will allow astronomers to more easily access Bayesian statistical methods to interpret image data from astronomical surveys. Bayesian methods excel at uncertainty quantification and data integration, two capabilities that will be critical in analyzing the deluge of data produced by next-generation astronomical surveys. One major barrier to the more widespread adoption of Bayesian analysis for interpreting astronomical images is computational: Bayesian inference is notoriously computationally demanding. A second major barrier is social: up to now, novel Bayesian methods have been developed in isolation by statisticians and have rarely been integrated into astronomy workflows because it is unclear to practitioners in either discipline how this can be accomplished. The BLISS Project addresses both these computational and community integration challenges. To overcome the computational challenges, BLISS leverages recent advances in Bayesian inference methodology, including the use of deep learning, variational inference, and GPU acceleration. To ensure immediate and sustainable community use, development of the BLISS is guided by needs identified by domain experts, who are themselves prepared to participate in BLISS's development and are enthusiastic about integrating BLISS into their teams' data analysis workflows.This project is supported by the Office of Advanced Cyberinfrastructure in the Directorate for Computer & Information Science & Engineering, the Division of Mathematical Sciences and the Division of Astronomical Sciences in the Directorate for Mathematical and Physical Sciences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
布利斯(贝叶斯光源分离器)项目是一项跨学科的研究工作,旨在开发一种软件工具,使天文学家能够利用机器学习的最新进展。通过利用这些进步,天文学家可以快速分析大量复杂的数据,以了解我们宇宙的性质。 该项目还通过一系列研讨会吸引和教育更广泛的受众,以提高软件开发和机器学习的技术水平。作为该项目的一部分开发的软件工具将使天文学家能够更容易地使用贝叶斯统计方法来解释天文调查的图像数据。贝叶斯方法擅长于不确定性量化和数据集成,这两种能力对于分析下一代天文调查产生的大量数据至关重要。更广泛地采用贝叶斯分析来解释天文图像的一个主要障碍是计算性的:贝叶斯推理是众所周知的计算要求。第二个主要障碍是社会:到目前为止,新的贝叶斯方法已经被统计学家孤立地开发出来,很少被整合到天文学工作流程中,因为这两个学科的从业者都不清楚如何实现这一点。布利斯项目解决了这些计算和社区整合的挑战。为了克服计算挑战,布利斯利用贝叶斯推理方法的最新进展,包括使用深度学习,变分推理和GPU加速。为了确保社区的即时和可持续使用,布利斯的开发由领域专家确定的需求指导,他们自己准备参与布利斯的开发,并热衷于将布利斯整合到他们团队的数据分析工作流程中。该项目得到了计算机信息科学工程局高级网络基础设施办公室的支持&&,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Diffusion Models for Probabilistic Deconvolution of Galaxy Images
- DOI:10.48550/arxiv.2307.11122
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Zhiwei Xue;Yuhang Li;Yash J. Patel;J. Regier
- 通讯作者:Zhiwei Xue;Yuhang Li;Yash J. Patel;J. Regier
Scalable Bayesian Inference for Finding Strong Gravitational Lenses
- DOI:
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Yash J. Patel;J. Regier
- 通讯作者:Yash J. Patel;J. Regier
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jeffrey Regier其他文献
Simulation-Based Inference for Detecting Blending in Spectra
用于检测光谱混合的基于仿真的推理
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Declan McNamara;Jeffrey Regier - 通讯作者:
Jeffrey Regier
Jeffrey Regier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Rapid, Scalable, and Joint Assessment of Seismic Multi-Hazards and Impacts: From Satellite Images to Causality-Informed Deep Bayesian Networks
地震多重灾害和影响的快速、可扩展和联合评估:从卫星图像到因果关系深度贝叶斯网络
- 批准号:
2242590 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Scalable Bayesian Reinforcement Learning in the Games Industry
游戏行业中的可扩展贝叶斯强化学习
- 批准号:
2890029 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Studentship
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Scalable Bayesian Methods for Sampling From Complex Probability Distributions
用于从复杂概率分布中采样的可扩展贝叶斯方法
- 批准号:
566614-2021 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
DMS/NIGMS 2: Scalable Bayesian Inference with Applications to Phylogenetics
DMS/NIGMS 2:可扩展贝叶斯推理及其在系统发育学中的应用
- 批准号:
2153704 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
Scalable and Robust Bayesian Inference for Implicit Statistical Models
隐式统计模型的可扩展且稳健的贝叶斯推理
- 批准号:
FT210100260 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
ARC Future Fellowships
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
- 批准号:
RGPIN-2017-06375 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Discovery Grants Program - Individual
Scalable Bayesian Statistical Machine Learning for Multi-modal Data with Applications to Multiple Sclerosis
多模态数据的可扩展贝叶斯统计机器学习及其在多发性硬化症中的应用
- 批准号:
2740724 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Studentship
Scalable Bayesian Methods for Sampling From Complex Probability Distributions
用于从复杂概率分布中采样的可扩展贝叶斯方法
- 批准号:
566614-2021 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years