DMS/NIGMS 2: Scalable Bayesian Inference with Applications to Phylogenetics

DMS/NIGMS 2:可扩展贝叶斯推理及其在系统发育学中的应用

基本信息

  • 批准号:
    2153704
  • 负责人:
  • 金额:
    $ 89.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

This project concerns methods for Bayesian inference, a variation on the scientific method that quantifies the degree of certainty in a particular hypothesis. The work is motivated by application to phylogenic analysis methods, which help to infer evolutionary history and have facilitated great progress towards placing extant and fossil species on the tree of life. However, existing methods are unable to infer a complete tree of life due to performance limitations. Additionally, the metaphor of a tree breaks down when exchange of genes occurs between contemporaneous species, necessitating additional links to form a network of life. This project aims to develop improved methods that not only scale to the challenge of inferring a complete tree of life but do so in a principled way that ensures the ability to quantify degree of confidence in estimated trees and networks. These improvements are expected to be applicable to other areas of research as well, far beyond phylogenetics and evolutionary biology. This project will also provide training and research opportunities for graduate students and research experiences for teachers.The Markov-Chain Monte Carlo (MCMC) algorithm is broadly applicable for Bayesian inference and often used to implement phylogenetic analysis methods. The overarching goal of this project is to develop techniques for significant scalability of Bayesian MCMC inference with mathematical guarantees. While the work will be implemented for and illustrated in phylogenomics, it is applicable to all domains where MCMC is used. To achieve this, the research aims to develop novel methods and mathematical results in four areas: (1) likelihood functions and calculations for parallel computation to take advantage of modern multi- and many-core computing hardware, (2) sampling over complex graphs to avoid walking in the space of phylogenetic trees and networks with its mix of discrete and continuous parameters and associated complexity of reversible jump moves and Hastings ratio calculations, (3) structured prior distributions to improve mixing, and (4) a divide-and-conquer approach to large scale inference building on existing techniques and those developed in this project. In addition to establishing mathematical results, all methods will be implemented and tested thoroughly on simulated and observed biological data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目涉及贝叶斯推理的方法,贝叶斯推理是对科学方法的一种变体,它量化了特定假设中的确定性程度。这项工作的动机是应用系统发育分析方法,这种方法有助于推断进化史,并促进了将现存物种和化石物种放在生命树上的巨大进展。然而,由于性能的限制,现有的方法无法推断出完整的生命树。此外,当同时代的物种之间发生基因交换时,树的比喻就会分解,这就需要额外的联系来形成一个生命网络。该项目的目的是开发改进的方法,这些方法不仅要适应推断完整生命树的挑战,而且要以一种原则性的方式这样做,以确保能够量化估计的树和网络的置信度。这些改进预计也将适用于其他研究领域,远远超出系统发育和进化生物学的范畴。该项目还将为研究生提供培训和研究机会,并为教师提供研究经验。马尔可夫链蒙特卡罗(MCMC)算法广泛适用于贝叶斯推理,经常用于实现系统发育分析方法。该项目的总体目标是开发具有数学保证的贝叶斯MCMC推理的显著可伸缩性的技术。虽然这项工作将在系统基因组学中实施和说明,但它适用于使用MCMC的所有领域。为了实现这一目标,该研究的目标是在四个领域开发新的方法和数学结果:(1)用于并行计算的似然函数和计算,以利用现代多核计算硬件;(2)在复杂图形上进行采样,以避免在系统发育树和网络及其离散和连续参数的混合以及可逆跳跃移动和Hastings比率计算的相关复杂性中行走;(3)结构化先验分布,以改进混合;以及(4)基于现有技术和本项目开发的技术,采用分而治之的方法进行大规模推理。除了建立数学结果外,所有方法都将在模拟和观测的生物数据上进行彻底的实施和测试。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the Estimation of Derivatives Using Plug-in Kernel Ridge Regression Estimators
  • DOI:
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zejian Liu;Meng Li
  • 通讯作者:
    Zejian Liu;Meng Li
Double Spike Dirichlet Priors for Structured Weighting
  • DOI:
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Huiming Lin;Meng Li
  • 通讯作者:
    Huiming Lin;Meng Li
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Luay Nakhleh其他文献

A survey of computational approaches for characterizing microbial interactions in microbial mats
  • DOI:
    10.1186/s13059-025-03634-2
  • 发表时间:
    2025-06-16
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Vanesa L. Perillo;Michael Nute;Nicolae Sapoval;Kristen D. Curry;Logan Golia;Yongze Yin;Huw A. Ogilvie;Luay Nakhleh;Santiago Segarra;Devaki Bhaya;Diana G. Cuadrado;Todd J. Treangen
  • 通讯作者:
    Todd J. Treangen
Comments on the model parameters in “SiFit: inferring tumor trees from single-cell sequencing data under finite-sites models”
  • DOI:
    10.1186/s13059-019-1692-5
  • 发表时间:
    2019-05-16
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Hamim Zafar;Anthony Tzen;Nicholas Navin;Ken Chen;Luay Nakhleh
  • 通讯作者:
    Luay Nakhleh
Stranger in a strange land: the experiences of immigrant researchers
  • DOI:
    10.1186/s13059-017-1370-4
  • 发表时间:
    2017-12-01
  • 期刊:
  • 影响因子:
    9.400
  • 作者:
    Sophien Kamoun;Rosa Lozano-Durán;Luay Nakhleh
  • 通讯作者:
    Luay Nakhleh

Luay Nakhleh的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Luay Nakhleh', 18)}}的其他基金

III: Medium: Scalable Evolutionary Analysis of SNVs and CNAs in Cancer Using Single-Cell DNA Sequencing Data
III:中:使用单细胞 DNA 测序数据对癌症中的 SNV 和 CNA 进行可扩展的进化分析
  • 批准号:
    2106837
  • 财政年份:
    2021
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
IIBR Informatics: Taming Complexity Through Simulations: Scalable Inference Under the Coalescent with Recombination
IIBR 信息学:通过模拟驯服复杂性:重组合并下的可扩展推理
  • 批准号:
    2030604
  • 财政年份:
    2020
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Standard Grant
The AGEP Data Engineering and Science Alliance Model: Training and Resources to Advance Minority Graduate Students and Postdoctoral Researchers into Faculty Careers
AGEP 数据工程和科学联盟模型:促进少数族裔研究生和博士后研究人员进入教师职业的培训和资源
  • 批准号:
    1916093
  • 财政年份:
    2019
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
III: Small: Models and Methods for Simultaneous Genotyping and Phylogeny Inference from Single-Cell DNA Data
III:小型:根据单细胞 DNA 数据同时进行基因分型和系统发育推断的模型和方法
  • 批准号:
    1812822
  • 财政年份:
    2018
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Standard Grant
AF: Medium: Algorithms for Scalable Phylogenetic Network Inference
AF:Medium:可扩展系统发育网络推理算法
  • 批准号:
    1800723
  • 财政年份:
    2018
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
AF: Medium: Statistical Inference of Complex Evolutionary Histories
AF:媒介:复杂进化历史的统计推断
  • 批准号:
    1514177
  • 财政年份:
    2015
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
AF: Medium: Algorithmic Foundations for Phylogenetic Networks
AF:中:系统发育网络的算法基础
  • 批准号:
    1302179
  • 财政年份:
    2013
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
ABI Innovation: Collaborative Research: Novel Methodologies for Genome-scale Evolutionary Analysis of Multi-locus Data
ABI 创新:协作研究:多位点数据基因组规模进化分析的新方法
  • 批准号:
    1062463
  • 财政年份:
    2011
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Standard Grant
CAREER: Computational Tools for Evolutionary Analysis of Biological Interaction Networks
职业:生物相互作用网络进化分析的计算工具
  • 批准号:
    0845336
  • 财政年份:
    2009
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
SGER: NET HMMs and Their Applications to Biological Network Alignment
SGER:NET HMM 及其在生物网络对齐中的应用
  • 批准号:
    0829276
  • 财政年份:
    2008
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Standard Grant

相似海外基金

DMS/NIGMS 1: Multilevel stochastic orthogonal subspace transformations for robust machine learning with applications to biomedical data and Alzheimer's disease subtyping
DMS/NIGMS 1:多级随机正交子空间变换,用于稳健的机器学习,应用于生物医学数据和阿尔茨海默病亚型分析
  • 批准号:
    2347698
  • 财政年份:
    2024
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
  • 批准号:
    2347957
  • 财政年份:
    2024
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Standard Grant
Collaborative Research: DMS/NIGMS 1: Simulating cell migration with a multi-scale 3D model fed by intracellular tension sensing measurements
合作研究:DMS/NIGMS 1:使用由细胞内张力传感测量提供的多尺度 3D 模型模拟细胞迁移
  • 批准号:
    2347956
  • 财政年份:
    2024
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Standard Grant
DMS/NIGMS 2: Deep learning for repository-scale analysis of tandem mass spectrometry proteomics data
DMS/NIGMS 2:用于串联质谱蛋白质组数据存储库规模分析的深度学习
  • 批准号:
    2245300
  • 财政年份:
    2023
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
DMS/NIGMS 1: Viscoelasticity and Flow of Biological Condensates via Continuum Descriptions - How Droplets Coalesce and Wet Cellular Surfaces
DMS/NIGMS 1:通过连续体描述的生物凝聚物的粘弹性和流动 - 液滴如何聚结和润湿细胞表面
  • 批准号:
    2245850
  • 财政年份:
    2023
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
DMS/NIGMS 2: Spatial, Multi-Host Petri Net Models for Zoonotic Disease Forecasting
DMS/NIGMS 2:用于人畜共患疾病预测的空间、多主机 Petri 网络模型
  • 批准号:
    10797423
  • 财政年份:
    2023
  • 资助金额:
    $ 89.5万
  • 项目类别:
DMS/NIGMS 1: Multi-timescale stochastic modeling to investigate epigenetic memory in bacteria
DMS/NIGMS 1:用于研究细菌表观遗传记忆的多时间尺度随机模型
  • 批准号:
    2245816
  • 财政年份:
    2023
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
DMS/NIGMS 1: Modeling Microbial Community Response to Invasion: A Multi-Omics and Multifacton
DMS/NIGMS 1:模拟微生物群落对入侵的反应:多组学和多因素
  • 批准号:
    10794584
  • 财政年份:
    2023
  • 资助金额:
    $ 89.5万
  • 项目类别:
DMS/NIGMS 2: Regulation of Cellular Stemness during the Epithelial-Mesenchymal Transition (EMT)
DMS/NIGMS 2:上皮-间质转化 (EMT) 期间细胞干性的调节
  • 批准号:
    2245957
  • 财政年份:
    2023
  • 资助金额:
    $ 89.5万
  • 项目类别:
    Continuing Grant
DMS/NIGMS 1: Topological Dynamics Models of Protein Function
DMS/NIGMS 1:蛋白质功能的拓扑动力学模型
  • 批准号:
    10794436
  • 财政年份:
    2023
  • 资助金额:
    $ 89.5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了