EAGER: DCL: SaTC: EIC: Inclusive-ScamBuster: Inclusive Scam Detection Methods for Social Media to Design Assistive Tools for Protecting Individuals with Developmental Disabilities

EAGER:DCL:SaTC:EIC:Inclusive-ScamBuster:社交媒体的包容性诈骗检测方法,用于设计保护发育障碍人士的辅助工具

基本信息

  • 批准号:
    2210107
  • 负责人:
  • 金额:
    $ 29.92万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Preventing social media-based scams is a critical challenge for cybersecurity. There exist tools to protect individuals during online browsing, however, they are not tailored towards vulnerable subpopulations like individuals with developmental disabilities (e.g., Autism). Such individuals become targets without dedicated support to assist with threat identification in potential scam posts. This project aims to understand the distinctive comprehension and attention patterns displayed by individuals with Autism and Attention-Deficit/Hyperactivity Disorder (ADHD), to improve scam detection tools to assist these subpopulations. The project’s novelties include a multidisciplinary approach combining social computing, cognitive psychology, special education, and computational linguistics research to address existing biases in Artificial Intelligence methods of Natural Language Processing (NLP) used in scam detection tools, based on behavioral studies of browsing patterns displayed by vulnerable subpopulations. The project’s broader significance is in integrating insights of human behavior into cybersecurity tools, leading to better protection of vulnerable subpopulations and greater inclusiveness in cybersecurity. This project pursues two goals. First, it develops an eye-tracking study to discover variations in attention patterns observable across populations with and without developmental disabilities when exposed to scams and legitimate social media posts. Second, it uses observed variations in attention patterns to highlight representation biases in the labeled datasets of NLP-based scam detection models. It further creates a novel set of linguistic attributes that can be used to train scam detection models tailored to aid vulnerable subpopulations. Project outcomes include a better understanding of social media scams for vulnerable subpopulations, the development of an inclusive NLP model for scam detection, and an open-source browser plugin prototype to aid individuals with developmental disabilities via tailored scam alerts. The project also creates a web portal (Inclusive-ScamBuster) hosting labeled scam datasets to highlight representational biases and open-source educational resources to support Special Education programs in teaching and training cybercrime prevention.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
防止基于社交媒体的诈骗是网络安全的一项关键挑战。有一些工具可以在在线浏览期间保护个人,但这些工具并不是针对发育障碍(例如自闭症)等弱势群体量身定做的。如果没有专门的支持来协助识别潜在的诈骗帖子中的威胁,这些人就会成为目标。该项目旨在了解自闭症和注意力缺陷/多动障碍(ADHD)患者表现出的独特理解和注意力模式,以改进诈骗检测工具,以帮助这些亚群。该项目的新颖性包括一种结合社会计算、认知心理学、特殊教育和计算语言学研究的多学科方法,以解决诈骗检测工具中使用的自然语言处理(NLP)人工智能方法中存在的偏见,该方法基于对易受攻击亚群显示的浏览模式的行为研究。该项目的更广泛意义在于将对人类行为的洞察融入网络安全工具,导致更好地保护脆弱群体,并在网络安全方面具有更大的包容性。这个项目追求两个目标。首先,它开发了一项眼球跟踪研究,以发现当接触到诈骗和合法的社交媒体帖子时,患有和没有发育障碍的人群的注意力模式的变化。其次,它使用观察到的注意模式的变化来突出基于NLP的诈骗检测模型的标签数据集中的表征偏差。它还创建了一组新颖的语言属性,可用于训练为帮助易受攻击的亚群而量身定做的诈骗检测模型。项目成果包括更好地了解针对弱势群体的社交媒体诈骗,开发用于诈骗检测的包容性NLP模型,以及通过定制诈骗警报帮助发育残疾个人的开放源码浏览器插件原型。该项目还创建了一个网站门户(Inclusive-Scambuster),托管标记的骗局数据集,以突出代表性偏见和开源教育资源,以支持特殊教育项目在教学和培训网络犯罪预防方面的计划。该奖项反映了NSF的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hemant Purohit其他文献

EVO-LYZER: Social Media Mining System for Evolving Communication Behavior Analytics to Aid Climate Change Programs
EVO-LYZER:社交媒体挖掘系统,用于发展通信行为分析以帮助气候变化项目
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasas Senarath;Amanda C. Borth;Edward Maibach;Hemant Purohit
  • 通讯作者:
    Hemant Purohit
What kind of #conversation is Twitter? Mining #psycholinguistic cues for emergency coordination
  • DOI:
    10.1016/j.chb.2013.05.007
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hemant Purohit;Andrew Hampton;Valerie L. Shalin;Amit P. Sheth;John Flach;Shreyansh Bhatt
  • 通讯作者:
    Shreyansh Bhatt
How social media supports hashtag activism through multivocality: A case study of #ILookLikeanEngineer
社交媒体如何通过多语言支持主题标签行动主义:案例研究
  • DOI:
    10.5210/fm.v23i11.9181
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aqdas Malik;A. Johri;Rajat Handa;Habib Karbasian;Hemant Purohit
  • 通讯作者:
    Hemant Purohit
Empowering Crisis Response-Led Citizen Communities: Lessons Learned from JKFloodRelief.org Initiative
增强以危机应对为主导的公民社区的能力:从 JKFloodRelief.org 倡议中汲取的经验教训
  • DOI:
    10.4018/978-1-4666-9688-4.ch015
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Hemant Purohit;Mamta Dalal;P. Singh;Bhavana Nissima;V. Moorthy;A. Vemuri;V. Krishnan;Raheela Khursheed;Surendran Balachandran;Harsh Kushwah;Aashish Rajgaria
  • 通讯作者:
    Aashish Rajgaria
Crisis Response Coordination in Online Communities
在线社区的危机应对协调
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hemant Purohit
  • 通讯作者:
    Hemant Purohit

Hemant Purohit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hemant Purohit', 18)}}的其他基金

RAPID/Collaborative Research: Human-AI Teaming for Big Data Analytics to Enhance Response to the COVID-19 Pandemic
快速/协作研究:人类与人工智能合作进行大数据分析以增强对 COVID-19 大流行的响应
  • 批准号:
    2029719
  • 财政年份:
    2020
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Summarizing Heterogeneous Crowdsourced & Web Streams Using Uncertain Concept Graphs
III:小:协作研究:异构众包总结
  • 批准号:
    1815459
  • 财政年份:
    2018
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
CRII: CHS: Mining Intentions on Social Media to Enhance Situational Awareness of Crisis Response Organizations
CRII:CHS:挖掘社交媒体意图,增强危机应对组织的态势感知
  • 批准号:
    1657379
  • 财政年份:
    2017
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant

相似国自然基金

OH+HCl/DCl↔H2O/HOD+Cl态-态反应的全维微分截面研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
番茄抗病毒基因DCL2b受病毒诱导调控的分子机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
套索RNA通过拮抗DCL1复合物抑制植物miRNA产生的分子机制
  • 批准号:
    31671261
  • 批准年份:
    2016
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
拟南芥DCL4介导、不依赖DRB4的新抗病毒RNA沉默分子机制研究
  • 批准号:
    31570145
  • 批准年份:
    2015
  • 资助金额:
    66.0 万元
  • 项目类别:
    面上项目
DCL在DNAmβ诱导的基因沉默和抗TYLCCNV病毒中的功能分析
  • 批准号:
    30771406
  • 批准年份:
    2007
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目

相似海外基金

EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Deplatforming and Online Hate Speech Across the Social Media Ecology
EAGER:DCL:SaTC:实现跨学科合作:社交媒体生态中的去平台化和在线仇恨言论
  • 批准号:
    2210023
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Using NLP to Identify Suspicious Transactions in Omnichannel Online C2C Marketplaces
EAGER:DCL:SaTC:实现跨学科协作:使用 NLP 识别全渠道在线 C2C 市场中的可疑交易
  • 批准号:
    2210091
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Efficient Human-in-the-Loop Redaction of Language Development Corpora
EAGER:DCL:SaTC:实现跨学科协作:语言开发语料库的高效人机交互编辑
  • 批准号:
    2210193
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Space Cybersecurity, Policy, and Risks
EAGER:DCL:SaTC:实现跨学科合作:空间网络安全、政策和风险
  • 批准号:
    2208458
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Adapting Economic Games to Personalize Privacy and Security Nudges
EAGER:DCL:SaTC:实现跨学科合作:调整经济游戏以个性化隐私和安全推动
  • 批准号:
    2209507
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Improving Human Discernment of Audio Deepfakes via Multi-level Information Augmentation
EAGER:DCL:SaTC:实现跨学科合作:通过多级信息增强提高人类对音频深赝品的识别能力
  • 批准号:
    2210011
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Inoculation vs. education: the role of real time alerts and end-user overconfidence
EAGER:DCL:SaTC:实现跨学科协作:接种与教育:实时警报和最终用户过度自信的作用
  • 批准号:
    2210198
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collab: Impact-aware Machine Learning for Fair and Private Decision Making: Algorithms and Applications in Juvenile Justice Systems
EAGER:DCL:SaTC:实现跨学科协作:影响感知机器学习促进公平和私人决策:少年司法系统中的算法和应用
  • 批准号:
    2209951
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Evolutionary Insights into Digital Ecologies of Fear
EAGER:DCL:SaTC:实现跨学科合作:对数字恐惧生态的进化洞察
  • 批准号:
    2210082
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Evaluating Bias In The Creation and Perception of GAN-Generated Faces
EAGER:DCL:SaTC:实现跨学科协作:评估 GAN 生成的面孔的创建和感知中的偏差
  • 批准号:
    2210142
  • 财政年份:
    2022
  • 资助金额:
    $ 29.92万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了