Collaborative Research: Statistical Inference for Multivariate and Functional Time Series via Sample Splitting

合作研究:通过样本分割对多元和函数时间序列进行统计推断

基本信息

  • 批准号:
    2210007
  • 负责人:
  • 金额:
    $ 11万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Multivariate and functional time series are prevalent and routinely collected in many fields. Statistical inference of such time series is a fundamental problem in modern time series analysis and has broad applications in many scientific areas, including bioinformatics, business, climate science, economics, finance, genetics, and signal processing. Compared with existing methodologies, this research project will provide nonparametric inference procedures that can accommodate a wide range of dimensionality and require weak assumptions on the data generating processes. The methodology ensuing from the project will be disseminated to the relevant scientific communities via publications, conference and seminar presentations, and the development of open-source software. The project will involve multiple research mentoring initiatives, including efforts on broadening participation, and will offer advanced topic courses to introduce the state-of-the-art techniques in time series analysis. The project will provide a broad range of interdisciplinary training opportunities at all educational levels and will contribute to the future workforce professional development.The project will develop a systematic body of methods and theory on inference for both multivariate (including high-dimensional) time series and functional time series based on sample splitting (SS) and self-normalization (SN). Recently, the SN technique has been advanced to the inference of high-dimensional time series, but it requires the use of a trimming parameter. Also, its scope of applicability is limited to high-dimensional time series with weak panel dependence which might be unrealistic in many modern time series applications. In turn, the existing SN for functional time series relies on dimension reduction by functional principal component analysis and, hence, the resulting procedure may be powerless when the alternative is orthogonal to the space spanned by the top principal components used in the procedure. To address these major limitations, this project will develop a new unified framework based on SS-SN, in conjunction with inference for multivariate and functional time series, and investigate its utility in application to analysis of time series of low, medium, high or infinite dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
多元时间序列和函数时间序列在许多领域都很流行,并且经常被收集。这种时间序列的统计推断是现代时间序列分析中的一个基本问题,在生物信息学、商业、气候科学、经济学、金融、遗传学和信号处理等许多科学领域都有广泛的应用。与现有的方法相比,本研究项目将提供非参数推理程序,可以适应大范围的维度,并且对数据生成过程要求较弱的假设。项目产生的方法将通过出版物、会议和研讨会演讲以及开发开源软件传播给相关科学界。该项目将涉及多个研究指导计划,包括扩大参与的努力,并将提供高级主题课程,介绍时间序列分析的最新技术。该项目将为所有教育水平提供广泛的跨学科培训机会,并将有助于未来劳动力的专业发展。该项目将开发基于样本分裂(SS)和自归一化(SN)的多变量(包括高维)时间序列和函数时间序列推理的系统方法和理论。近年来,SN技术已发展到对高维时间序列的推断,但需要使用微调参数。此外,它的适用范围仅限于面板依赖性较弱的高维时间序列,这在许多现代时间序列应用中可能是不现实的。反过来,功能时间序列的现有SN依赖于功能主成分分析的降维,因此,当替代方案与程序中使用的顶部主成分所跨越的空间正交时,所得程序可能无能为力。为了解决这些主要限制,本项目将开发一个基于SS-SN的新的统一框架,结合多元和函数时间序列的推理,并研究其在低、中、高或无限维时间序列分析中的应用。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Runmin Wang其他文献

Text detection approach based on confidence map and context information
基于置信图和上下文信息的文本检测方法
  • DOI:
    10.1016/j.neucom.2015.01.023
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    6
  • 作者:
    Runmin Wang;Nong Sang;Changxin Gao
  • 通讯作者:
    Changxin Gao
Submitted to the Annals of Statistics INFERENCE FOR CHANGE POINTS IN HIGH DIMENSIONAL DATA By
提交给统计年鉴 高维数据变化点的推断
  • DOI:
    10.1016/j.vetmic.2024.109997
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Runmin Wang;S. Volgushev;Xiaofeng Shao
  • 通讯作者:
    Xiaofeng Shao
Dimension-agnostic change point detection
与维度无关的变化点检测
  • DOI:
    10.1016/j.jeconom.2025.106012
  • 发表时间:
    2025-07-01
  • 期刊:
  • 影响因子:
    4.000
  • 作者:
    Hanjia Gao;Runmin Wang;Xiaofeng Shao
  • 通讯作者:
    Xiaofeng Shao
License plate detection using gradient information and cascade detectors
使用梯度信息和级联检测器进行车牌检测
  • DOI:
    10.1016/j.ijleo.2013.06.008
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Runmin Wang;Nong Sang;Rui Huang;Yuehuan Wang
  • 通讯作者:
    Yuehuan Wang
Dating the break in high-dimensional data
确定高维数据中断的日期
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Runmin Wang;Xiaofeng Shao
  • 通讯作者:
    Xiaofeng Shao

Runmin Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Urban Vector-Borne Disease Transmission Demands Advances in Spatiotemporal Statistical Inference
合作研究:城市媒介传播疾病传播需要时空统计推断的进步
  • 批准号:
    2414688
  • 财政年份:
    2024
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Collaborative Research: IMR: MM-1A: Scalable Statistical Methodology for Performance Monitoring, Anomaly Identification, and Mapping Network Accessibility from Active Measurements
合作研究:IMR:MM-1A:用于性能监控、异常识别和主动测量映射网络可访问性的可扩展统计方法
  • 批准号:
    2319592
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Enabling Hybrid Methods in the NIMBLE Hierarchical Statistical Modeling Platform
协作研究:在 NIMBLE 分层统计建模平台中启用混合方法
  • 批准号:
    2332442
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247795
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Differentially Private Data Synthesis: Practical Algorithms and Statistical Foundations
协作研究:SaTC:核心:小型:差分隐私数据合成:实用算法和统计基础
  • 批准号:
    2247794
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Collaborative Research: The computational and neural basis of statistical learning during musical enculturation
合作研究:音乐文化过程中统计学习的计算和神经基础
  • 批准号:
    2242084
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Statistical and Algorithmic Foundations of Distributionally Robust Policy Learning
合作研究:CIF:媒介:分布式稳健政策学习的统计和算法基础
  • 批准号:
    2312205
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
Collaborative Research: Conference: International Indian Statistical Association annual conference
合作研究:会议:国际印度统计协会年会
  • 批准号:
    2327625
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
NSF-BSF: Collaborative Research: CIF: Small: Neural Estimation of Statistical Divergences: Theoretical Foundations and Applications to Communication Systems
NSF-BSF:协作研究:CIF:小型:统计差异的神经估计:通信系统的理论基础和应用
  • 批准号:
    2308445
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Standard Grant
Collaborative Research: CAS-Climate: Risk Analysis for Extreme Climate Events by Combining Numerical and Statistical Extreme Value Models
合作研究:CAS-Climate:结合数值和统计极值模型进行极端气候事件风险分析
  • 批准号:
    2308680
  • 财政年份:
    2023
  • 资助金额:
    $ 11万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了