CRII: CHS: Mining Intentions on Social Media to Enhance Situational Awareness of Crisis Response Organizations

CRII:CHS:挖掘社交媒体意图,增强危机应对组织的态势感知

基本信息

  • 批准号:
    1657379
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-01 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

In large-scale emergencies, people post a lot of information about their status, needs, and abilities to help on social media. In principle, these posts might help emergency management teams get a better picture of the situation and find useful resources, but the number and questionable accuracy of these posts make them less useful than they could be. This project is about developing tools that identify people's intentions related to the emergency, sorting tweets into categories such as requests for help or information, offers of help, announcements of their safety or location, and so on. This problem of intent inference is a key scientific problem in natural language processing and artificial intelligence, with practical uses in a number of areas beyond emergency management, including web search and providing location-aware services. The researchers will attack the intent inference problem by narrowing it to the emergency response domain. First, they will work closely with emergency response teams to identify meaningful categories of intent that align with emergency response needs, in order to guide the collection and labeling of social media posts. Then, they will develop strategies drawn from existing image and natural language processing techniques and informed by the emergency response context to do the categorization work. Finally, they will build and evaluate a tool that uses the categorization algorithms to highlight the social media posts that are most likely to be useful to emergency responders. The work will be used to help develop courses around data science at the lead researcher's school, and the tools will be made publicly available through an open source code and advertised to communities of interest. To build the set of crisis-specific intent categories, the research team will first analyze existing operational manuals for emergency response including the Incident-Command-System models to extract key processes and initial categories, then refine that set working with experts from the Fairfax Fire and Rescue Department, an advisory committee of social media working group for emergency services at Department of Homeland Security that has members across the country, and members of the project's advisory board. Intent extraction will be modeled as a multilabel classification problem on two dimensions: type of intent, and topical category; this formulation maps well to characteristics of posts (which might contain multiple intents and topics) and scopes the complexity of general intent inference. Datasets will be gathered from prior crisis events and labeled by crowd workers interested in humanitarian work according to the categories identified from the first phase. Features of posts will be constructed from posts? metadata using natural language processing techniques on textual content, image processing techniques on multimedia content and author profiling techniques. Features will include extracting syntactic-semantic patterns that represent declarative and psycholinguistic knowledge as well as ideas from discourse analysis, while features of authors will be drawn from their provided profile information as well as aggregate inferences from their posts. The team will use a multi-task learning framework as the underlying algorithm to leverage relationships between the different categories to be classified. Finally, the developed interface will support faceted browsing by intent, topic, location, and response management process, and be evaluated through training exercises with the research team's practitioner partners.
在大规模紧急情况下,人们会在社交媒体上发布大量关于自己的状况、需求和帮助能力的信息。原则上,这些员额可能有助于应急管理团队更好地了解情况并找到有用的资源,但这些员额的数量和准确性令人怀疑,使它们没有应有的用处。这个项目是关于开发工具来识别人们与紧急情况相关的意图,将推文分类为请求帮助或信息、提供帮助、宣布他们的安全或位置等类别。意图推理问题是自然语言处理和人工智能中的一个关键科学问题,在应急管理以外的许多领域都有实际应用,包括网络搜索和提供位置感知服务。研究人员将通过将意图推理问题缩小到紧急响应领域来解决该问题。首先,他们将与应急团队密切合作,确定符合应急需求的有意义的意图类别,以指导社交媒体帖子的收集和标签。然后,他们将制定从现有图像和自然语言处理技术中提取的策略,并根据紧急响应上下文进行分类工作。最后,他们将构建和评估一个工具,该工具使用分类算法来突出显示最有可能对应急人员有用的社交媒体帖子。这项工作将用于在首席研究员所在的学校帮助开发围绕数据科学的课程,这些工具将通过开放源代码公开提供,并向感兴趣的社区发布广告。为了建立一套针对危机的意图类别,研究团队将首先分析现有的应急响应操作手册,包括事件指挥系统模型,以提取关键流程和初始类别,然后与来自费尔法克斯消防和救援部的专家、国土安全部紧急服务社交媒体工作组的咨询委员会和该项目顾问委员会的成员合作,完善这一套。意图提取将被建模为两个维度上的多标签分类问题:意图类型和主题类别;该公式很好地映射到帖子的特征(可能包含多个意图和主题),并限定了一般意图推理的复杂性。数据集将从以前的危机事件中收集,并由对人道主义工作感兴趣的群众工作人员根据第一阶段确定的类别进行标记。柱子的特征将由柱子构造吗?在文本内容上使用自然语言处理技术的元数据,在多媒体内容上使用图像处理技术和作者简介技术。特征将包括提取句法-语义模式,代表陈述性和心理语言学知识以及来自语篇分析的想法,而作者的特征将从他们提供的个人资料信息中提取,以及从他们的帖子中汇总推论。该团队将使用多任务学习框架作为基本算法,以利用要分类的不同类别之间的关系。最后,开发的界面将支持按意图、主题、位置和响应管理流程进行分面浏览,并通过与研究团队的从业者合作伙伴进行培训练习进行评估。

项目成果

期刊论文数量(19)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classifying Relevant Social Media Posts During Disasters Using Ensemble of Domain-agnostic and Domain-specific Word Embeddings
使用与领域无关和特定领域的词嵌入集合对灾难期间的相关社交媒体帖子进行分类
The Digital Crow's Nest: A Framework for Proactive Disaster Informatics & Resilience by Open Source Intelligence.
数字鸦巢:主动灾害信息学框架
CitizenHelper-Adaptive: Expert-Augmented Streaming Analytics System for Emergency Services and Humanitarian Organizations
CitizenHelper-Adaptive:适用于紧急服务和人道主义组织的专家增强流分析系统
Ranking of Social Media Alerts with Workload Bounds in Emergency Operation Centers
Modeling Transportation Uncertainty in Matching Help Seekers and Suppliers during Disasters
对灾难期间匹配求助者和供应商的运输不确定性进行建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hemant Purohit其他文献

EVO-LYZER: Social Media Mining System for Evolving Communication Behavior Analytics to Aid Climate Change Programs
EVO-LYZER:社交媒体挖掘系统,用于发展通信行为分析以帮助气候变化项目
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yasas Senarath;Amanda C. Borth;Edward Maibach;Hemant Purohit
  • 通讯作者:
    Hemant Purohit
What kind of #conversation is Twitter? Mining #psycholinguistic cues for emergency coordination
  • DOI:
    10.1016/j.chb.2013.05.007
  • 发表时间:
    2013-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Hemant Purohit;Andrew Hampton;Valerie L. Shalin;Amit P. Sheth;John Flach;Shreyansh Bhatt
  • 通讯作者:
    Shreyansh Bhatt
How social media supports hashtag activism through multivocality: A case study of #ILookLikeanEngineer
社交媒体如何通过多语言支持主题标签行动主义:案例研究
  • DOI:
    10.5210/fm.v23i11.9181
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aqdas Malik;A. Johri;Rajat Handa;Habib Karbasian;Hemant Purohit
  • 通讯作者:
    Hemant Purohit
Empowering Crisis Response-Led Citizen Communities: Lessons Learned from JKFloodRelief.org Initiative
增强以危机应对为主导的公民社区的能力:从 JKFloodRelief.org 倡议中汲取的经验教训
  • DOI:
    10.4018/978-1-4666-9688-4.ch015
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    9.3
  • 作者:
    Hemant Purohit;Mamta Dalal;P. Singh;Bhavana Nissima;V. Moorthy;A. Vemuri;V. Krishnan;Raheela Khursheed;Surendran Balachandran;Harsh Kushwah;Aashish Rajgaria
  • 通讯作者:
    Aashish Rajgaria
Crisis Response Coordination in Online Communities
在线社区的危机应对协调
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hemant Purohit
  • 通讯作者:
    Hemant Purohit

Hemant Purohit的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hemant Purohit', 18)}}的其他基金

EAGER: DCL: SaTC: EIC: Inclusive-ScamBuster: Inclusive Scam Detection Methods for Social Media to Design Assistive Tools for Protecting Individuals with Developmental Disabilities
EAGER:DCL:SaTC:EIC:Inclusive-ScamBuster:社交媒体的包容性诈骗检测方法,用于设计保护发育障碍人士的辅助工具
  • 批准号:
    2210107
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
RAPID/Collaborative Research: Human-AI Teaming for Big Data Analytics to Enhance Response to the COVID-19 Pandemic
快速/协作研究:人类与人工智能合作进行大数据分析以增强对 COVID-19 大流行的响应
  • 批准号:
    2029719
  • 财政年份:
    2020
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Summarizing Heterogeneous Crowdsourced & Web Streams Using Uncertain Concept Graphs
III:小:协作研究:异构众包总结
  • 批准号:
    1815459
  • 财政年份:
    2018
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于CHS-DRGs和诊疗全流程大数据挖掘的子宫肌瘤手术“主路径+支路径”的复合临床路径模式研究
  • 批准号:
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
CHS-DRG模式下ICU老年患者CRE医院感染防控对策研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
威尼斯镰刀菌中几丁质合成关键基因Chs调控菌丝体结构与蛋白消 化特性的机制研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
PLA/GO/CHS导电分层缓释给药系统治疗长节段周围神经损伤的研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
旁系同源CHS在柑橘黄酮类及花色苷合成通路中差异化调控的分子机制
  • 批准号:
    32302507
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
Chs 基因对红曲色素和桔霉素合成代谢的调控作用
  • 批准号:
    2021JJ31146
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
红曲霉关键chs基因调控红曲色素和桔霉素合成的作用机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
除虫菊CHS合成酶及其互作蛋白协同调控除虫菊酯合成代谢的催化机制解析
  • 批准号:
    31902051
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
先进CHS结构柔性复合负极材料的可控制备及其储能构效关系研究
  • 批准号:
    61574122
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CARDIOVASCULAR HEALTH STUDY (CHS) - TASK AREA C, STUDY CLOSEOUT
心血管健康研究 (CHS) - 任务领域 C,研究收尾
  • 批准号:
    10974001
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
CHS: Medium: Collaborative Research: Augmenting Human Cognition with Collaborative Robots
CHS:媒介:协作研究:用协作机器人增强人类认知
  • 批准号:
    2343187
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
CRII: CHS: RUI: Computational models of humans for studying and improving Human-AI interaction
CRII:CHS:RUI:用于研究和改善人机交互的人类计算模型
  • 批准号:
    2218226
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CHS: Smal: AI-Human Collaboration in Autonomous Vehicles for Safety and Security
CHS:Smal:自动驾驶汽车中的人工智能与人类协作以确保安全
  • 批准号:
    2245055
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CHS: Small: Towards Next-Generation Large-Scale Nonlinear Deformable Simulation
CHS:小型:迈向下一代大规模非线性变形模拟
  • 批准号:
    2244651
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CHS: Developing Youth Data Literacies through a Visual Programming Environment
CRII:CHS:通过可视化编程环境培养青少年数据素养
  • 批准号:
    2230291
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CHS: Medium: Collaborative Research: Empirically Validated Perceptual Tasks for Data Visualization
CHS:媒介:协作研究:数据可视化的经验验证感知任务
  • 批准号:
    2236644
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CRII: CHS: Harnessing Machine Learning to Improve Human Decision Making: A Case Study on Deceptive Detection
CRII:CHS:利用机器学习改善人类决策:欺骗检测案例研究
  • 批准号:
    2125113
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CHS: Small: Guiding future design of affect-aware cyber-human systems through the investigation of human reactions to machine errors
CHS:小型:通过研究人类对机器错误的反应来指导情感感知网络人类系统的未来设计
  • 批准号:
    2151464
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CHS: Small: Developing and Validating a Physically Accurate Light-Scattering Model for the Rendering of Bird and Other Dinosaur Feathers
CHS:小型:开发和验证用于渲染鸟类和其他恐龙羽毛的物理精确光散射模型
  • 批准号:
    2007974
  • 财政年份:
    2021
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了