Nonlinear Dynamics of Auditory Hair Cells and Efferent Neurons
听觉毛细胞和传出神经元的非线性动力学
基本信息
- 批准号:2210316
- 负责人:
- 金额:$ 55.23万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The first level of processing of auditory information in the inner ear is performed by hair cells – specialized cells that detect sound and transmit information to the brain. These cells show extremely high sensitivity, responding to movements smaller than a nanometer. Further, they show a broad dynamic range, for they are able to withstand much larger deflections without permanent damage. It is still not understood how the auditory system achieves this sensitivity and how it can rapidly reduce it when exposed to a loud environment. It has been proposed that efferent neurons, which transmit information from the brain to the hair cells, serve a protective role that reduces hair cell damage induced by loud sound. However, thus far there is very little understanding of the physics behind this mechanism. The investigators in this project will measure directly how stimulation of efferent neurons affects the sensitivity of the hair cell, both in terms of its ability to detect weak signals and to withstand strong stimuli. Their goal is to compare the experimental findings to models based on nonlinear dynamics to explain how efference may provide a dynamic feedback system that controls the sensitivity of hearing.The inner ear contains an extremely sensitive mechanical detector, which routinely responds to nanoscale deflections. At the lowest perceptible levels, sound induces movements in the internal auditory organs that are as small as few Å. Meanwhile, the applied pressures that the auditory systems can withstand range over six orders of magnitude. A dynamic gain control mechanism which would modulate the sensitivity of detection by a hair cell would serve to explain how a system could simultaneously achieve such remarkable sensitivity while maintaining the requisite robustness. The goal of this project is to determine whether efferent neurons constitute the dynamic feedback mechanism which tunes the nonlinear properties of the hair cell. The investigators aim to explore how efferent activity affects the mechanical responsiveness of the sensory system by direct measurements performed in vitro on live and active hair cells under different levels of efferent activity. The investigators will compare the findings to theoretical predictions based on nonlinear dynamics theory, which has proposed that an internal control parameter self-tunes the system to the vicinity of a Hopf bifurcation. This study is therefore complementary to prior work in the field, and will serve to bridge areas previously studied in vivo and in vitro, as well as in theoretical models. The project will also provide important mentoring opportunities, as the PI aims to recruit graduate students from underrepresented groups through participation in the APS Bridge program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
内耳中听觉信息的第一级处理是由毛细胞执行的,毛细胞是检测声音并将信息传输到大脑的专门细胞。这些细胞表现出极高的敏感性,对小于一纳米的运动做出反应。此外,它们显示出广泛的动态范围,因为它们能够承受更大的偏转而不会造成永久性损坏。目前还不清楚听觉系统是如何达到这种灵敏度的,以及当暴露在嘈杂的环境中时,它是如何迅速降低这种灵敏度的。有人提出传出神经元,从大脑传递信息到毛细胞,起到保护作用,减少由响亮的声音引起的毛细胞损伤。 然而,到目前为止,人们对这种机制背后的物理原理知之甚少。 该项目的研究人员将直接测量传出神经元的刺激如何影响毛细胞的敏感性,包括检测弱信号和承受强刺激的能力。他们的目标是将实验结果与基于非线性动力学的模型进行比较,以解释传出如何提供一个控制听觉灵敏度的动态反馈系统。 在最低的可感知水平上,声音会引起内部听觉器官的运动,这种运动小到只有几秒钟。同时,听觉系统所能承受的压力范围超过六个数量级。一个动态增益控制机制,它将调制毛细胞的检测灵敏度将用于解释一个系统如何能够同时实现这种显着的灵敏度,同时保持必要的鲁棒性。该项目的目标是确定传出神经元是否构成调节毛细胞非线性特性的动态反馈机制。研究人员的目的是探索传出活动如何影响感觉系统的机械反应,通过在不同传出活动水平下对活的和活跃的毛细胞进行体外直接测量。研究人员将把研究结果与基于非线性动力学理论的理论预测进行比较,非线性动力学理论提出了一个内部控制参数将系统自调整到Hopf分叉附近。因此,这项研究是补充以前的工作在该领域,并将有助于桥梁领域以前研究在体内和体外,以及在理论模型。该项目还将提供重要的指导机会,因为PI旨在通过参与APS Bridge计划从代表性不足的群体中招募研究生。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dolores Bozovic其他文献
Optical imaging of synaptic activity in auditory hair cells
- DOI:
10.1016/j.bpj.2022.11.2267 - 发表时间:
2023-02-10 - 期刊:
- 影响因子:
- 作者:
Martín A. Toderi;Dzmitry Vaido;Dolores Bozovic - 通讯作者:
Dolores Bozovic
The Active Process in Coupled Hair Cells in the Frog Sacculus
- DOI:
10.1016/j.bpj.2010.12.639 - 发表时间:
2011-02-02 - 期刊:
- 影响因子:
- 作者:
Clark Elliott Strimbu;Lea Fredrickson-Hemsing;Dolores Bozovic - 通讯作者:
Dolores Bozovic
Frequency modulated self-oscillation and phase inertia in a synchronized nanowire mechanical resonator
同步纳米线机械谐振器中的调频自激振荡和相位惯性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Talitha Weiss;A. Kronwald;Florian Marquardt;Michael J. Moeckel;D. Southworth;E. Weig;J. Arcamone;Dolores Bozovic;A. Yochelis - 通讯作者:
A. Yochelis
Magnetic Nanoparticles as Mechanical Actuators of Inner Ear Hair Cells
- DOI:
10.1016/j.bpj.2011.11.3564 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Dolores Bozovic;David Rowland;Yuttana Roongthomskol - 通讯作者:
Yuttana Roongthomskol
Nonlinearities in Threshold-Level Detection by Inner Ear Hair Cells
- DOI:
10.1016/j.bpj.2011.11.3568 - 发表时间:
2012-01-31 - 期刊:
- 影响因子:
- 作者:
Yuttana Roongthumskul;Albert Kao;Sebastiaan W.F. Meenderink;Dolores Bozovic - 通讯作者:
Dolores Bozovic
Dolores Bozovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dolores Bozovic', 18)}}的其他基金
Criticality and Active Dynamics in Mechanical Detection by the Inner Ear
内耳机械检测的关键性和主动动力学
- 批准号:
1916136 - 财政年份:2019
- 资助金额:
$ 55.23万 - 项目类别:
Standard Grant
Chaotic Dynamics of Inner Ear Hair Cells
内耳毛细胞的混沌动力学
- 批准号:
1705139 - 财政年份:2017
- 资助金额:
$ 55.23万 - 项目类别:
Continuing Grant
Tuning, sensitivity, and nonlinear dynamics in systems of coupled hair cells
耦合毛细胞系统中的调谐、灵敏度和非线性动力学
- 批准号:
1257817 - 财政年份:2013
- 资助金额:
$ 55.23万 - 项目类别:
Standard Grant
Interfacing Live Cells with Artificial Membranes: Synchronization in a Coupled Nonlinear System
将活细胞与人造膜连接:耦合非线性系统中的同步
- 批准号:
1131842 - 财政年份:2012
- 资助金额:
$ 55.23万 - 项目类别:
Standard Grant
Mechanical coupling between hair cells of the inner ear
内耳毛细胞之间的机械耦合
- 批准号:
0920696 - 财政年份:2009
- 资助金额:
$ 55.23万 - 项目类别:
Standard Grant
相似国自然基金
β-arrestin2- MFN2-Mitochondrial Dynamics轴调控星形胶质细胞功能对抑郁症进程的影响及机制研究
- 批准号:n/a
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
- 批准号:
10677342 - 财政年份:2023
- 资助金额:
$ 55.23万 - 项目类别:
Delineation of auditory-motor population dynamics underlying sensorimotor integration in the birdsong system
鸟鸣系统中感觉运动整合的听觉运动群体动态的描绘
- 批准号:
10824950 - 财政年份:2023
- 资助金额:
$ 55.23万 - 项目类别:
Brain Electrical Dynamics for Top-Down Auditory Attention
自上而下听觉注意力的脑电动力学
- 批准号:
RGPIN-2019-05659 - 财政年份:2022
- 资助金额:
$ 55.23万 - 项目类别:
Discovery Grants Program - Individual
A novel role for higher order auditory circuits: social group dynamics and descending pathways to the Social Behavior Network
高阶听觉回路的新作用:社会群体动态和社会行为网络的下降路径
- 批准号:
10671537 - 财政年份:2022
- 资助金额:
$ 55.23万 - 项目类别:
A novel role for higher order auditory circuits: social group dynamics and descending pathways to the Social Behavior Network
高阶听觉回路的新作用:社会群体动态和社会行为网络的下降路径
- 批准号:
10507454 - 财政年份:2022
- 资助金额:
$ 55.23万 - 项目类别:
Circuit dynamics of predictive vocal suppression in auditory cortex
听觉皮层预测性声音抑制的电路动力学
- 批准号:
10314184 - 财政年份:2021
- 资助金额:
$ 55.23万 - 项目类别:
Brain Electrical Dynamics for Top-Down Auditory Attention
自上而下听觉注意力的脑电动力学
- 批准号:
RGPIN-2019-05659 - 财政年份:2021
- 资助金额:
$ 55.23万 - 项目类别:
Discovery Grants Program - Individual
Circuit dynamics of predictive vocal suppression in auditory cortex
听觉皮层预测性声音抑制的电路动力学
- 批准号:
10523049 - 财政年份:2021
- 资助金额:
$ 55.23万 - 项目类别:
Brain Electrical Dynamics for Top-Down Auditory Attention
自上而下听觉注意力的脑电动力学
- 批准号:
RGPIN-2019-05659 - 财政年份:2020
- 资助金额:
$ 55.23万 - 项目类别:
Discovery Grants Program - Individual
The significance of nominally non-responsive neural dynamics in auditory perception and behavior.
名义上无反应的神经动力学在听觉感知和行为中的重要性。
- 批准号:
10427262 - 财政年份:2020
- 资助金额:
$ 55.23万 - 项目类别: