III: Small: Bringing Transparency and Interpretability to Bias Mitigation Approaches in Place-based Mobility-centric Prediction Models for Decision Making in High-Stakes Settings
III:小:为基于地点的以移动性为中心的预测模型中的偏差缓解方法带来透明度和可解释性,以便在高风险环境中进行决策
基本信息
- 批准号:2210572
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The covid-19 pandemic has brought to light the importance of place-based mobility-centric prediction models in high-stakes settings. Place-based mobility-centric prediction models (PBMC) use human mobility data - together with other contextual information - to predict spatio-temporal statistics of significance to decision makers. For example, mobility patterns that reflect (lack of) compliance with travel restrictions and stay-at-home orders have been used to predict the number of covid-19 cases over time. However, the data used to train PBMC models can suffer from different types of bias that might in turn affect the fairness of the predictions. For example, under-reporting in the covid-19 case data used to train PBMC models might produce predictions that are wrongfully low, which could lead a decision maker to, for example, not locate a covid-19 testing unit in a given neighborhood. This project presents a set of approaches to mitigate - in a transparent and interpretable manner - a diverse set of bias present in PBMC models for two high-stakes settings: public health and public safety. In addition, by providing insights into the processes that led to the embedding of bias in the data and into the effects of bias on the fairness of the models, this project will hopefully move PBMC models closer to broad adoption in policy settings. This project will also offer educational opportunities for graduate and undergraduate students as well as computing workshops for high school students and under-represented genders in computing with a focus on the value of PBMC models, human mobility data and fairness for high-stakes settings.The technical contributions of this project are divided in three thrusts. Thrust one will provide a novel PBMC prediction model - that can work with different neural architectures - to predict reported place-based statistics while mitigating for potential under-reporting bias. Thrust two will create a novel sampling bias mitigation approach to correct for under-represented groups in human mobility data collected from cell phones. Thrust three will produce novel transfer learning approaches to mitigate for algorithmic bias, i.e., low performing models in data-scarce regions. The thrusts proposed have been designed in a modular way, to allow for the layered combination of data and algorithmic bias mitigation approaches in end-to-end mitigation frameworks that are evaluated for fairness and accuracy. All bias mitigation methods are accompanied by novel interpretability approaches to distill the social determinants that might explain how the bias was embedded into place-based statistics and mobility data; as well as to identify the role that different model components might play in the mitigation itself. Our research outcomes will advance the state of the art in the design of transparent and interpretable bias mitigation approaches for PBMC models with evaluations in two high-stakes settings: public health and public safety.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
2019冠状病毒病(COVID-19,即2019冠状病毒病)大流行突显了基于地点、以流动性为中心的预测模型在高风险环境中的重要性。基于地点的移动中心预测模型(PBMC)使用人类移动数据-以及其他上下文信息-来预测对决策者有意义的时空统计数据。例如,反映(不)遵守旅行限制和呆在家里的命令的流动模式已被用于预测一段时间内新冠肺炎病例的数量。然而,用于训练PBMC模型的数据可能会受到不同类型的偏差的影响,这反过来可能会影响预测的公平性。例如,用于训练PBMC模型的COVID-19病例数据的低报可能会产生错误的低预测,这可能导致决策者无法在给定的社区中找到COVID-19检测单位。该项目提出了一套方法,以透明和可解释的方式减轻PBMC模型中存在的两种高风险环境中的各种偏见:公共卫生和公共安全。此外,通过深入了解导致数据中嵌入偏见的过程以及偏见对模型公平性的影响,该项目有望使PBMC模型更接近于在政策环境中的广泛采用。该项目还将为研究生和本科生提供教育机会,并为高中生和在计算方面代表性不足的性别提供计算讲习班,重点是PBMC模型的价值、人类流动数据和高风险环境的公平性。Thrust One将提供一种新的PBMC预测模型-可以与不同的神经架构一起工作-以预测报告的基于位置的统计数据,同时减轻潜在的漏报偏倚。推力二将创建一种新的采样偏差缓解方法,以纠正从手机收集的人类移动数据中代表性不足的群体。推力三将产生新的迁移学习方法,以减轻算法偏差,即,数据稀缺地区的低性能模型。所提出的重点是以模块化方式设计的,以允许在端到端缓解框架中分层组合数据和算法偏差缓解方法,并对公平性和准确性进行评估。所有偏见缓解方法都伴随着新颖的可解释性方法,以提取可能解释偏见如何嵌入到基于地点的统计数据和流动性数据中的社会决定因素,并确定不同模型组件在缓解过程中可能发挥的作用。我们的研究成果将推动PBMC模型设计透明和可解释的偏倚缓解方法的最新技术水平,并在两个高风险环境中进行评估:公共卫生和公共安全。该奖项反映了NSF的法定使命,并被认为值得通过使用基金会的知识价值和更广泛的影响审查标准进行评估来支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vanessa Frias-Martinez其他文献
Vanessa Frias-Martinez的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vanessa Frias-Martinez', 18)}}的其他基金
SCC-IRG Track 1: Inclusive Public Transit Toolkit to Assess Quality of Service Across Socioeconomic Status in Baltimore City
SCC-IRG 第 1 轨道:用于评估巴尔的摩市各种社会经济状况的服务质量的包容性公共交通工具包
- 批准号:
1951924 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CAREER: Data-driven Models of Human Mobility and Resilience for Decision Making
职业:数据驱动的人类流动性和决策弹性模型
- 批准号:
1750102 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
Crowdsourcing Urban Bicycle Level of Service Measures
众包城市自行车服务水平衡量标准
- 批准号:
1636915 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
A hardware/software platform driving innovation in the eMobility sector and removing barriers for small/niche OEMs, bringing solutions to market 4x faster
硬件/软件平台推动电动汽车领域的创新,消除小型/利基 OEM 的障碍,将解决方案推向市场的速度加快 4 倍
- 批准号:
10035787 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Collaborative R&D
III: Small: Bringing database query optimization to data intensive applications
III:小型:将数据库查询优化引入数据密集型应用程序
- 批准号:
2008295 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Pyrethrum in Bloom: Bringing Back the Power of Pyrethrum to Enhance Livelihoods of Small Holders in Kenya
除虫菊盛开:恢复除虫菊的力量,提高肯尼亚小农户的生计
- 批准号:
49480 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Feasibility Studies
Collaborative Research: SWIFT: Small: Cross-Layer Interference Management: Bringing Interference Alignment to Reality
合作研究:SWIFT:小型:跨层干扰管理:将干扰调整变为现实
- 批准号:
2030285 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CNS Core: Small: Bringing the Cloud to the Masses: Models, Algorithms, and Systems Targeting Deep Learning for the IoT Era
CNS 核心:小:将云带入大众:针对物联网时代深度学习的模型、算法和系统
- 批准号:
2007284 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SMall Affordable Robust RealTime Tracker (SMARRTT) - Bringing IoT Tracking to the Masses
小型、经济实惠、鲁棒的实时跟踪器 (SMARRTT) - 将物联网跟踪带给大众
- 批准号:
52247 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Study
Collaborative Research: SWIFT: Small: Cross-Layer Interference Management: Bringing Interference Alignment to Reality
合作研究:SWIFT:小型:跨层干扰管理:将干扰调整变为现实
- 批准号:
2030245 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Turning small data into big data - bringing AI to performance benchmarking for UK Manufacturers
将小数据转化为大数据 - 将人工智能引入英国制造商的绩效基准测试
- 批准号:
105126 - 财政年份:2019
- 资助金额:
$ 60万 - 项目类别:
Collaborative R&D
Bringing profitability to small scale on-farm AD through cryogenics
通过低温技术为小规模农场 AD 带来盈利
- 批准号:
102772 - 财政年份:2017
- 资助金额:
$ 60万 - 项目类别:
Collaborative R&D
Improving the Consumer Experience in Retail: Bringing big data to small users
改善零售消费者体验:将大数据带给小用户
- 批准号:
102549 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Collaborative R&D














{{item.name}}会员




