Nuclear Magnetic Resonance Studies of Quantum Criticality in Correlated Electron Materials
相关电子材料量子临界性的核磁共振研究
基本信息
- 批准号:2210613
- 负责人:
- 金额:$ 47.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-technical Abstract: Electrons in solids may exhibit a wide range of important phenomena, ranging from superconductivity to magnetism. Often this behavior can be tuned by controlling some external parameter such as temperature, pressure, or magnetic field. This project investigates several key materials through a set of controlled nuclear magnetic resonance (NMR) experiments with the aim of understanding how to tune and control their properties. Such tuning can lead to dramatic and unexpected changes in the material behavior, believed to emerge from a phenomenon called "quantum criticality". This work advances fundamental understanding of quantum criticality by probing the nature of exotic electronic states within a set of carefully selected materials, and provides modern physics training and mentoring to graduate and undergraduate students for the next generation of scientists and engineers.Technical Abstract: The objective of this proposal is to develop a deeper understanding of the behavior of strongly correlated electron materials near quantum phase transitions. Strongly correlated electron materials hold tremendous potential for new technologies, but a fundamental understanding of their relevant many-body physics remains one of the greatest challenges in condensed matter physics. Often the most interesting science arises at a quantum critical point, where unconventional superconductivity emerges and non-Fermi liquid behavior dominates the normal state behavior. Nuclear magnetic resonance (NMR) is a powerful tool to investigate the fluctuations that drive much of these effects, but requires controlled experiments to disentangle the effects of spin and charge degrees of freedom. This project utilizes new NMR techniques to probe these dynamics under both hydrostatic pressure and uniaxial strain in complementary systems, including a model heavy fermion system exhibiting a Fermi surface jump at a quantum critical point, and a metal with ferro-quadrupolar order of localized f-electrons. Several theoretical predictions are being tested in this project about the nature of the excitations in the vortex cores of a spin-triplet superconductor with a multicomponent chiral order parameter, and how the spin fluctuations in the normal state respond to uniaxial strain.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:固体中的电子可能会表现出广泛的重要现象,从超导性到磁性。通常,这种行为可以通过控制一些外部参数(如温度、压力或磁场)来调整。该项目通过一系列受控核磁共振(NMR)实验研究了几种关键材料,旨在了解如何调整和控制它们的特性。这种调整可以导致材料行为的戏剧性和意想不到的变化,据信是从一种称为“量子临界”的现象中出现的。这项工作通过在一组精心挑选的材料中探测奇异电子态的性质,推进了对量子临界性的基本理解,并为下一代科学家和工程师的研究生和本科生提供现代物理培训和指导。技术摘要:本研究的目的是对强关联电子材料在量子相附近的行为有更深入的了解过渡。强关联电子材料在新技术方面具有巨大的潜力,但对其相关多体物理学的基本理解仍然是凝聚态物理学中最大的挑战之一。通常,最有趣的科学出现在量子临界点,在那里出现非常规的超导性,非费米液体行为主导正常状态行为。核磁共振(NMR)是研究驱动这些效应的波动的有力工具,但需要受控实验来解开自旋和电荷自由度的影响。该项目利用新的核磁共振技术来探测互补系统中静水压力和单轴应变下的这些动力学,包括在量子临界点处表现出费米表面跳跃的模型重费米子系统,以及具有铁四极序的金属局部f电子。在这个项目中,几个理论预测正在被测试,这些预测是关于具有多组分手征序参数的自旋三重态超导体的涡核中激发的性质,以及正常状态下的自旋波动如何对单轴应变做出响应。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Curro其他文献
Optically detected NMR in a diamond-anvil cell for geochemistry
在地球化学金刚石砧池中光学检测 NMR
- DOI:
10.1016/bs.adioch.2021.04.001 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Zhipan Wang;Christopher G. McPherson;R. Kadado;W. Casey;Nicholas Curro - 通讯作者:
Nicholas Curro
Nuclear magnetic resonance in the heavy fermion superconductors
- DOI:
10.1088/0034-4885/72/2/026502 - 发表时间:
2008-12 - 期刊:
- 影响因子:18.1
- 作者:
Nicholas Curro - 通讯作者:
Nicholas Curro
Nicholas Curro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Curro', 18)}}的其他基金
NMR Studies of Nematicity in Strongly Correlated Electron Systems under Uniaxial Strain
单轴应变下强相关电子系统向列性的核磁共振研究
- 批准号:
1807889 - 财政年份:2018
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
High Pressure NMR Studies of Doping and Inhomogeneity in Strongly Correlated Electron Systems
强相关电子系统中掺杂和不均匀性的高压核磁共振研究
- 批准号:
1506961 - 财政年份:2015
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
Workshop on Emerging Frontiers in Experimental Condensed Matter Physics of Strongly Correlated Electron Systems
强相关电子系统实验凝聚态物理新兴前沿研讨会
- 批准号:
1521822 - 财政年份:2015
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
NMR Studies of Nanoscale Electronic Inhomogeneity in Strongly Correlated Electron Systems
强相关电子系统中纳米级电子不均匀性的核磁共振研究
- 批准号:
1005393 - 财政年份:2010
- 资助金额:
$ 47.93万 - 项目类别:
Continuing Grant
相似海外基金
Deciphering the Competing Mechanisms of Li Microstructure Formation in Solid Electrolytes with Nuclear Magnetic Resonance Spectroscopy (NMR) and Imaging (MRI)
利用核磁共振波谱 (NMR) 和成像 (MRI) 解读固体电解质中锂微结构形成的竞争机制
- 批准号:
2319151 - 财政年份:2024
- 资助金额:
$ 47.93万 - 项目类别:
Continuing Grant
Sensitivity Enhancement in Nuclear Magnetic Resonance (NMR) by Para-hydrogen Induced Hyperpolarization (SenseNMR)
通过仲氢诱导超极化 (SenseNMR) 增强核磁共振 (NMR) 灵敏度
- 批准号:
2885315 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
Studentship
Innovation of cancer chemoradiotherapy based on hyperpolarized-nuclear magnetic resonance metabolic imaging
基于超极化核磁共振代谢成像的癌症放化疗创新
- 批准号:
23H02870 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Nuclear magnetic resonance spectrometer for measurements at elevated pressures
用于高压测量的核磁共振波谱仪
- 批准号:
516655476 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
Major Research Instrumentation
Probing in situ higher order structures of monoclonal antibodies at water-air and water-oil interfaces via high-field nuclear magnetic resonance spectroscopy for viral infections
通过高场核磁共振波谱技术在水-空气和水-油界面原位探测单克隆抗体的高阶结构以检测病毒感染
- 批准号:
10593377 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
NMR-BASE: Nuclear Magnetic Resonance for Biomolecule Analysis in Supported Environments
NMR-BASE:在支持的环境中进行生物分子分析的核磁共振
- 批准号:
BB/X019594/1 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
Research Grant
Regulation mechanism of intra-nuclear reactions studied by nanoscale magnetic resonance
纳米磁共振研究核内反应调控机制
- 批准号:
23H00370 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
CAS-MNP: Understanding the Interactions Between Small Molecules and Plastic Nanoparticles for Environmental Remediation and Sensing Using Nuclear Magnetic Resonance
CAS-MNP:了解小分子和塑料纳米颗粒之间的相互作用,用于环境修复和核磁共振传感
- 批准号:
2304888 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
Standard Grant
Enhanced Solid-State Nuclear Magnetic Resonance Spectroscopy of Amorphous Solid Dispersions for Pharmaceutical Sciences
用于制药科学的非晶固体分散体的增强型固态核磁共振波谱分析
- 批准号:
2889117 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
Studentship
600 MHz Nuclear Magnetic Resonance Spectrometer (NMR spectrometer)
600 MHz核磁共振波谱仪(NMR波谱仪)
- 批准号:
531954423 - 财政年份:2023
- 资助金额:
$ 47.93万 - 项目类别:
Major Research Instrumentation