Collaborative Research: Applying 3D Deep Learning to Site Detection in Tropical Regions
合作研究:将 3D 深度学习应用于热带地区的站点检测
基本信息
- 批准号:2210630
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Researchers at several universities will develop Artificial Intelligence (AI) methods to investigate long-term human impacts on tropical ecosystems. Archaeologists can provide new insights to AI because they study both spatial and temporal components critical for understanding cultural processes that shape past and present ecosystems. The remote sensing technique of airborne light detection and ranging (lidar) captures 3D data that permits researchers to identify previously unknown archaeological features beneath forest canopy and in inaccessible places, generating new data and fundamentally changing the capacity for understanding the spatial aspects of anthropogenic landscapes. However, in tropical regions, researchers face a challenge because they must manually examine the 2D images of lidar data to identify archaeological features, which is time-consuming, expensive, and produces results that commonly exclude small archaeological features, such as households. This project overcomes these issues by developing new methods that directly analyze 3D lidar data that can be used in addition to the 2D images. The research team will develop transformative methods applicable to industry, academia, and beyond providing insights into current issues of the interconnections of landuse, land transformation, and the importance of the tropics in human-environment dynamics for resilience and sustainability. The study has broad implications for the local, national, and global challenges we face on multiple fronts related to climate change, urbanization, and population growth that coincides with increasing social inequality and environmental consequences. An interdisciplinary team will use AI to develop machine learning methods that allow researchers to automatically detect archaeological features of varying sizes as well as anthropogenic landscape modifications in lidar data in relation to topography and vegetation. These methods will enhance understanding of human impacts on tropical ecosystems because they (a) produce more comprehensive documentation of the built environment, allowing for more accurate demographic reconstructions and total household counts, (b) fill in gaps in measurements of the smallest structures that constituted the majority of ancient Maya households allowing for more accurate reconstructions of household and neighborhood inequality and social networks, and (c) create more accurate maps of human-environment relationships. Beyond archaeology, these methods will benefit biology, geology, geography, civil engineering, architecture, and urban studies, which rely on accurate reconstructions of small spatial features. The collaborative focus of the project will also create and enhance educational and training opportunities for students in geospatial techniques and computer science, and strengthen connections between the US-based institutions, international agencies, and indigenous communities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几所大学的研究人员将开发人工智能(AI)方法,以调查人类对热带生态系统的长期影响。考古学家可以为人工智能提供新的见解,因为他们研究的空间和时间成分对于理解塑造过去和现在生态系统的文化过程至关重要。机载光探测和测距(激光雷达)的遥感技术捕获3D数据,使研究人员能够识别森林树冠下和人迹罕至的地方以前未知的考古特征,产生新的数据,并从根本上改变理解人类景观空间方面的能力。然而,在热带地区,研究人员面临着一个挑战,因为他们必须手动检查激光雷达数据的2D图像来识别考古特征,这是耗时,昂贵的,并且产生的结果通常排除了小型考古特征,如家庭。该项目通过开发直接分析3D激光雷达数据的新方法克服了这些问题,这些数据可以在2D图像之外使用。 该研究团队将开发适用于工业,学术界和其他领域的变革方法,以深入了解土地利用,土地改造以及热带地区在人类环境动态中对恢复力和可持续性的重要性的相互联系。这项研究对我们在气候变化、城市化和人口增长等多个方面面临的地方、国家和全球挑战具有广泛的影响,这些挑战与日益严重的社会不平等和环境后果相吻合。一个跨学科的团队将使用人工智能开发机器学习方法,使研究人员能够自动检测不同大小的考古特征,以及激光雷达数据中与地形和植被相关的人为景观修改。这些方法将增进人们对人类对热带生态系统影响的了解,因为它们(a)对建筑环境产生更全面的记录,从而能够更准确地重建人口统计和家庭总数,(B)填补了构成古玛雅家庭大多数的最小结构的测量空白,从而能够更准确地重建家庭和邻里不平等以及社交网络,以及(c)绘制更准确的人类-环境关系图。除了考古学之外,这些方法还将有益于生物学、地质学、地理学、土木工程、建筑学和城市研究,这些研究依赖于对小空间特征的精确重建。该项目的合作重点还将为学生创造和加强地理空间技术和计算机科学方面的教育和培训机会,并加强美国机构、国际机构和土著社区之间的联系。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Keith Prufer其他文献
What we talk about when we talk about seasonality – A transdisciplinary review
- DOI:
10.1016/j.earscirev.2021.103843 - 发表时间:
2022-02-01 - 期刊:
- 影响因子:10.000
- 作者:
Ola Kwiecien;Tobias Braun;Camilla Francesca Brunello;Patrick Faulkner;Niklas Hausmann;Gerd Helle;Julie A. Hoggarth;Monica Ionita;Christopher S. Jazwa;Saige Kelmelis;Norbert Marwan;Cinthya Nava-Fernandez;Carole Nehme;Thomas Opel;Jessica L. Oster;Aurel Perşoiu;Cameron Petrie;Keith Prufer;Saija M. Saarni;Annabel Wolf;Sebastian F.M. Breitenbach - 通讯作者:
Sebastian F.M. Breitenbach
Keith Prufer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Keith Prufer', 18)}}的其他基金
Doctoral Dissertation Research: Advancing biocultural and molecular studies of agriculturalist diet and nutrition.
博士论文研究:推进农业饮食和营养的生物文化和分子研究。
- 批准号:
2347683 - 财政年份:2024
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Origins of food production in the northern neotropical lowlands
合作研究:北部新热带低地粮食生产的起源
- 批准号:
2212982 - 财政年份:2022
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award: Community Growth and Sustainability in Unstable Times
博士论文改进奖:不稳定时期的社区成长和可持续性
- 批准号:
1743448 - 财政年份:2017
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Award: Comparative Examination of the Process of Urban Development
博士论文改进奖:城市发展过程的比较考察
- 批准号:
1649080 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Long-Term Human-Environmental Interaction In a Lowland Tropic Setting
合作研究:低地热带环境中的长期人类与环境相互作用
- 批准号:
1632061 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Doctoral Dissertation Improvement Grant: Environmental Variability, Settlement and Status Differentiation at Uxbenka
博士论文改进补助金:乌克斯本卡的环境变化、定居和地位分化
- 批准号:
1139754 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
HSD: Collaborative Research: Development and Resilience of Complex Socioeconomic Systems: A Theoretical Model and Case Study from the Maya Lowlands
HSD:协作研究:复杂社会经济系统的发展和复原力:玛雅低地的理论模型和案例研究
- 批准号:
0827305 - 财政年份:2008
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
- 批准号:
2318862 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219796 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Applying a novel approach to link microbial growth efficiency, function and energy transfer in the ocean
合作研究:应用一种新方法将海洋中微生物的生长效率、功能和能量转移联系起来
- 批准号:
2219795 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Applying and Refining a Model for Dynamic, Discussion-Based Professional Development for Middle School Teachers about Fractions, Ratios and Proportions
合作研究:应用和完善中学教师关于分数、比率和比例的动态、基于讨论的专业发展模型
- 批准号:
2331772 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Collaborative Research: Applying the stress gradient hypothesis to understand the microbial facilitation of seagrass responses to thermal stress
合作研究:应用应力梯度假设来了解海草对热应力反应的微生物促进作用
- 批准号:
2311577 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
- 批准号:
2307150 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
- 批准号:
2307151 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: URoL:ASC: Applying rules of life to forecast emergent behavior of phytoplankton and advance water quality management
合作研究:URoL:ASC:应用生命规则预测浮游植物的紧急行为并推进水质管理
- 批准号:
2318861 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Collaborative Research: Building and Applying a Universal Plagioclase Oxybarometer using X-ray Absorption Spectroscopy
合作研究:使用 X 射线吸收光谱法构建和应用通用斜长石氧压计
- 批准号:
2243745 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Collaborative Research: Building and Applying a Universal Plagioclase Oxybarometer using X-ray Absorption Spectroscopy
合作研究:使用 X 射线吸收光谱法构建和应用通用斜长石氧压计
- 批准号:
2243746 - 财政年份:2023
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant