Development of a General Framework for Nonlinear Prediction Using Auto-Cumulants: Theory, Methodology, and Computation

使用自累积量开发非线性预测的通用框架:理论、方法和计算

基本信息

  • 批准号:
    2131233
  • 负责人:
  • 金额:
    $ 15万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-15 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Data exhibiting nonlinear characteristics appear routinely in many areas of applications, such as weather forecasting, signal processing, etc. These features are also present in many economic and demographic time series collected by various national agencies for policy formulations that have important implications for the public and the society. However, the current methodology is heavily reliant upon linear approaches and some ad hoc methods are often used to handle nonlinear data, rendering the final results of analysis difficult to interpret. As a result, there is acute need for systematic development of new theoretical and methodological framework for improved prediction that takes into account the nonlinear features of the time series data. The proposed research seeks to address this need directly by developing new capabilities that will build on the existing linear theory for Gaussian and provide substantially improved prediction. In addition to advancing the statistical science and related scientific applications, it will also have potential impact on the practice of seasonal adjustments for better public policy formulation in the US and other nations.This project seeks to develop new theory and methodology for prediction for non-Gaussian, nonlinear processes, utilizing the tools of higher-order auto-cumulant functions and polyspectra. Specifically, the goals of the project include : (i) developing quadratic and higher order nonlinear predictors, with demonstrable improvements, (ii) extending forecasting approaches for a new class of so-called quadratically predictable processes; (iii) developing nonlinear models-fitting via an appropriate generalization of the Whittle likelihood, derived from the mean squared error of the one-step ahead quadratic forecasting filter, (iv) developing theoretical foundations of auto-cumulants for multi-linear forms that are paramount to derive third and higher order polynomial predictors,(v) developing algorithms and supporting software in R for implementation of the methodology. The results from the project are expected to provide tools for substantially improved forecasting and signal extraction for univariate and multivariate time series data exhibiting nonlinear characteristics that are prevalent in many areas of sciences (e.g., Astronomy, Atmospheric sciences, Finance, Signal Processing) and real life applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
表现出非线性特性的数据经常出现在许多应用领域,如天气预报,信号处理等,这些功能也存在于许多经济和人口的时间序列收集的各种国家机构的政策制定,对公众和社会有重要影响。然而,目前的方法是严重依赖于线性的方法和一些特设的方法往往被用来处理非线性数据,使分析的最终结果难以解释。因此,迫切需要系统地发展新的理论和方法框架,以改善预测,考虑到时间序列数据的非线性特征。拟议的研究旨在通过开发新的能力来直接满足这一需求,这些能力将建立在现有的高斯线性理论基础上,并提供大幅改进的预测。除了促进统计科学和相关的科学应用,它也将对美国和其他国家更好地制定公共政策的季节调整实践产生潜在的影响。本项目旨在利用高阶自累积函数和多谱工具,为非高斯非线性过程的预测发展新的理论和方法。具体而言,该项目的目标包括:(一)开发二次和高阶非线性预测,具有明显的改进,(二)扩展预测方法的一类新的所谓的二次可预测的过程;(iii)通过从一步前二次预测滤波器的均方误差导出的Whittle似然的适当推广来开发非线性模型拟合,(iv)发展多线性形式的自累积量的理论基础,这对于导出三阶和更高阶多项式预测是至关重要的,(v)开发R中的算法和支持软件以实现该方法。预计该项目的结果将为显着改善单变量和多变量时间序列数据的预测和信号提取提供工具,这些数据表现出在许多科学领域普遍存在的非线性特征(例如,该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Soumendra Lahiri其他文献

Quadratic Prediction of Time Series via Auto-Cumulants

Soumendra Lahiri的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Soumendra Lahiri', 18)}}的其他基金

CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
  • 批准号:
    2210811
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
EAGER: ADAPT: Time-Domain Study of the Dynamics of Relativistic Jets
EAGER:ADAPT:相对论喷流动力学的时域研究
  • 批准号:
    2235457
  • 财政年份:
    2022
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Higher Order Asymptotics for Some Nonstandard Problems in Time Series and in High Dimensions
一些时间序列和高维非标准问题的高阶渐近
  • 批准号:
    2006475
  • 财政年份:
    2019
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Development of a General Framework for Nonlinear Prediction Using Auto-Cumulants: Theory, Methodology, and Computation
使用自累积量开发非线性预测的通用框架:理论、方法和计算
  • 批准号:
    1811998
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Higher Order Asymptotics for Some Nonstandard Problems in Time Series and in High Dimensions
一些时间序列和高维非标准问题的高阶渐近
  • 批准号:
    1613192
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Long range dependence and resampling methodology for spatial data
空间数据的长程依赖性和重采样方法
  • 批准号:
    1329240
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Asymptotic Theory and Resampling Methods for High Dimensional Data
高维数据的渐近理论和重采样方法
  • 批准号:
    1310068
  • 财政年份:
    2013
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Conference on resampling methods and high dimensional data
重采样方法和高维数据会议
  • 批准号:
    1016239
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Long range dependence and resampling methodology for spatial data
空间数据的长程依赖性和重采样方法
  • 批准号:
    1007703
  • 财政年份:
    2010
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Resampling methods for temporal and spatial processes and their higher order accuracy
时空过程的重采样方法及其高阶精度
  • 批准号:
    0707139
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant

相似国自然基金

Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:

相似海外基金

Development of a General Framework for Nonlinear Prediction Using Auto-Cumulants: Theory, Methodology, and Computation
使用自累积量开发非线性预测的通用框架:理论、方法和计算
  • 批准号:
    1811998
  • 财政年份:
    2018
  • 资助金额:
    $ 15万
  • 项目类别:
    Continuing Grant
Development of a general framework for safety in human robot interation employing a compliant tactile sensor and multi-touch controller
使用兼容的触觉传感器和多点触摸控制器开发人机交互安全通用框架
  • 批准号:
    491683-2015
  • 财政年份:
    2017
  • 资助金额:
    $ 15万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Development of a general classification framework under the Neyman-Pearson Paradigm, with biomedical and social applications
在内曼-皮尔逊范式下开发通用分类框架,并具有生物医学和社会应用
  • 批准号:
    1613338
  • 财政年份:
    2016
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development of a general framework for safety in human robot interation employing a compliant tactile sensor and multi-touch controller
使用兼容的触觉传感器和多点触摸控制器开发人机交互安全通用框架
  • 批准号:
    491683-2015
  • 财政年份:
    2015
  • 资助金额:
    $ 15万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Collaborative Research: A General Framework for High Throughput Biological Learning: Theory Development and Applications
协作研究:高通量生物学习的通用框架:理论发展和应用
  • 批准号:
    0714817
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Collaborative Research: A General Framework for High Throughput Biological Learning: Theory Development and Applications
协作研究:高通量生物学习的通用框架:理论发展和应用
  • 批准号:
    0714669
  • 财政年份:
    2007
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development of a general framework for integrated design and control of micro-motion devices for biotechnology applications
开发用于生物技术应用的微运动装置集成设计和控制的通用框架
  • 批准号:
    234809-2000
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
    Strategic Projects - Group
ITR: Development of a General Computational Framework for the Optimal Integration of Atmospheric Chemical Transport Models and Measurements Using Adjoints
ITR:开发通用计算框架,用于使用伴随函数优化大气化学物质传输模型和测量的集成
  • 批准号:
    0205198
  • 财政年份:
    2002
  • 资助金额:
    $ 15万
  • 项目类别:
    Standard Grant
Development of a general framework for integrated design and control of micro-motion devices for biotechnology applications
开发用于生物技术应用的微运动装置集成设计和控制的通用框架
  • 批准号:
    234809-2000
  • 财政年份:
    2001
  • 资助金额:
    $ 15万
  • 项目类别:
    Strategic Projects - Group
Development of a general framework for integrated design and control of micro-motion devices for biotechnology applications
开发用于生物技术应用的微运动装置集成设计和控制的通用框架
  • 批准号:
    234809-2000
  • 财政年份:
    2000
  • 资助金额:
    $ 15万
  • 项目类别:
    Strategic Projects - Group
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了