EAGER: ADAPT: Time-Domain Study of the Dynamics of Relativistic Jets
EAGER:ADAPT:相对论喷流动力学的时域研究
基本信息
- 批准号:2235457
- 负责人:
- 金额:$ 29.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-15 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Relativistic jets from active galactic nuclei are beams of particles and radiation powered by accretion of interstellar gas onto a supermassive black hole at the center of active galaxies. Jets are observed across the electromagnetic spectrum, from radio waves to gamma-ray energies. Their presence in galaxies has been shown to correlate with the formation rate of new stars. Limited knowledge of the structure and evolution of relativistic jets in active galactic nuclei at present has been described as “a major bottleneck in understanding the evolution of galaxies” in a recent report by the National Academy of Sciences. Jets are very dynamic astrophysical objects. The light emission observed from jets is often seen to drift slowly over years. Fast changes in intensity that can last weeks, days or even hours are also observed. Changes in the jet emission over time carry information about the energy of the particles (mostly electrons, positrons, and protons) that the jet plasma is made of, opening a window to understand the physical processes that make relativistic jets the most powerful particle accelerators in the Universe. This project will leverage the combined expertise of researchers in the fields of statistics, observational astrophysics, and theoretical plasma physics at Washington University in St. Louis to develop a framework of new statistical and artificial intelligence tools, computer simulations, and analytical physical models that characterize the evolution of relativistic jets over time as seen by radio, optical, and gamma-ray telescopes, and will connect it to the physical processes powering the jet dynamics. The research could enhance the understanding of the physical mechanisms underlying relativistic jets and impact physics and other disciplines. The project will have broader impacts on undergraduate and graduate teaching, the development of human resources with training and skills in astronomy and data science, and outreach activities targeting local students from underrepresented minorities in the fields of mathematics, statistics, physics, and astronomy.In the last decade, facilities such as the Owens Valley Radio Observatory and Very Large Baseline Array at radio frequencies, the Zwicky Transient Facility (optical), and the Fermi-LAT observatory (gamma rays) have produced and continue to deliver light curves with unprecedented high cadence and time coverage for bright jets from active galactic nuclei. Alongside, theoretical efforts have also progressed rapidly in recent years, increasing physicists’ understanding of the mechanisms of particle acceleration that can produce the observed high energy emission from jets, particularly through plasma simulations. Despite the progress in first-principles theoretical modeling, there is a significant gap between outputs of theoretical models and observational data. This project seeks to develop and make use of novel statistical and artificial intelligence tools to understand the main sources of the discrepancy and combine observed light curves with the state-of-the art particle-in-cell simulations to narrow the gap. As a first step, a library of simulated light curves will be generated and a novel set of new diagnostic tools for time series analysis of multivariate, irregularly spaced time domain data will be developed. Next, important features from the multi-band time series analysis will be used to characterize properties of both simulated and observed light curves, which will help to discriminate among different classes of theoretical models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
来自活动星系核的相对论喷流是由星际气体吸积到活动星系中心的超大质量黑洞上的粒子和辐射束。从无线电波到伽马射线能量,在整个电磁频谱中都可以观察到喷流。它们在星系中的存在已经被证明与新恒星的形成速度有关。美国国家科学院最近的一份报告称,目前对活动星系核中相对论性喷流的结构和演化的了解有限,这是“理解星系演化的一个主要瓶颈”。喷流是非常动态的天体。从喷流中观测到的光发射经常被视为多年来缓慢漂移。还可以观察到强度的快速变化,可以持续数周,数天甚至数小时。喷流发射随时间的变化携带着关于构成喷流等离子体的粒子(主要是电子、正电子和质子)能量的信息,这为理解使相对论喷流成为宇宙中最强大的粒子加速器的物理过程打开了一扇窗户。该项目将利用圣路易斯华盛顿大学统计学、观测天体物理学和理论等离子体物理学领域研究人员的综合专业知识,开发一个新的统计和人工智能工具、计算机模拟和分析物理模型的框架,以描述无线电、光学和伽马射线望远镜观察到的相对论性喷流随时间的演变,并将其与推动喷气动力学的物理过程联系起来。这项研究可以加强对相对论喷流和撞击物理学及其他学科的物理机制的理解。该项目将对本科生和研究生的教学、具有天文学和数据科学方面的培训和技能的人力资源开发以及针对数学、统计学、物理学和天文学领域代表性不足的少数民族的当地学生的外联活动产生更广泛的影响。在过去十年中,欧文斯谷射电天文台和甚大基线阵列等无线电频率设施,兹威基瞬变设施(光学)和费米-LAT天文台(伽马射线)已经产生并继续提供活动星系核明亮喷流的光变曲线,其节奏和时间范围前所未有地高。与此同时,近年来理论工作也取得了迅速进展,增加了物理学家对粒子加速机制的理解,这种机制可以产生从射流中观察到的高能发射,特别是通过等离子体模拟。尽管在第一性原理理论建模方面取得了进展,但理论模型的输出与观测数据之间存在显著差距。该项目旨在开发和利用新的统计和人工智能工具来了解差异的主要来源,并将观察到的光变曲线与最先进的粒子模拟相结合,以缩小差距。作为第一步,将产生一个模拟光变曲线库,并开发一套新的诊断工具,用于对多变量、不规则间隔的时域数据进行时间序列分析。接下来,多波段时间序列分析的重要特征将用于表征模拟和观测的光变曲线的特性,这将有助于区分不同类别的理论模型。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soumendra Lahiri其他文献
Quadratic Prediction of Time Series via Auto-Cumulants
- DOI:
10.1007/s13171-023-00326-6 - 发表时间:
2023-09-08 - 期刊:
- 影响因子:0.500
- 作者:
Tucker S. McElroy;Dhrubajyoti Ghosh;Soumendra Lahiri - 通讯作者:
Soumendra Lahiri
Soumendra Lahiri的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soumendra Lahiri', 18)}}的其他基金
CAS-Climate/Collaborative Research: Prediction and Uncertainty Quantification of Non-Gaussian Spatial Processes with Applications to Large-scale Flooding in Urban Areas
CAS-气候/合作研究:非高斯空间过程的预测和不确定性量化及其在城市地区大规模洪水中的应用
- 批准号:
2210811 - 财政年份:2022
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
Development of a General Framework for Nonlinear Prediction Using Auto-Cumulants: Theory, Methodology, and Computation
使用自累积量开发非线性预测的通用框架:理论、方法和计算
- 批准号:
2131233 - 财政年份:2021
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
Higher Order Asymptotics for Some Nonstandard Problems in Time Series and in High Dimensions
一些时间序列和高维非标准问题的高阶渐近
- 批准号:
2006475 - 财政年份:2019
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
Development of a General Framework for Nonlinear Prediction Using Auto-Cumulants: Theory, Methodology, and Computation
使用自累积量开发非线性预测的通用框架:理论、方法和计算
- 批准号:
1811998 - 财政年份:2018
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
Higher Order Asymptotics for Some Nonstandard Problems in Time Series and in High Dimensions
一些时间序列和高维非标准问题的高阶渐近
- 批准号:
1613192 - 财政年份:2016
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
Long range dependence and resampling methodology for spatial data
空间数据的长程依赖性和重采样方法
- 批准号:
1329240 - 财政年份:2013
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
Asymptotic Theory and Resampling Methods for High Dimensional Data
高维数据的渐近理论和重采样方法
- 批准号:
1310068 - 财政年份:2013
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
Conference on resampling methods and high dimensional data
重采样方法和高维数据会议
- 批准号:
1016239 - 财政年份:2010
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
Long range dependence and resampling methodology for spatial data
空间数据的长程依赖性和重采样方法
- 批准号:
1007703 - 财政年份:2010
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
Resampling methods for temporal and spatial processes and their higher order accuracy
时空过程的重采样方法及其高阶精度
- 批准号:
0707139 - 财政年份:2007
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
相似国自然基金
ADAPT技术治疗急性颅内大血管闭塞的成功率相关因素分析
- 批准号:2022J011448
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
相似海外基金
Adapt innovative deep learning methods from breast cancer to Alzheimers disease
采用从乳腺癌到阿尔茨海默病的创新深度学习方法
- 批准号:
10713637 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
ADAPT: Adaptive Decision support for Addiction Treatment
ADAPT:成瘾治疗的自适应决策支持
- 批准号:
10810953 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
RAISE: ADAPT : Novel AI/ML methods to derive CMB temperature and polarization power spectra from uncleaned maps
RAISE:ADAPT:从未清理的地图中导出 CMB 温度和偏振功率谱的新颖 AI/ML 方法
- 批准号:
2327245 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Standard Grant
FIRE-ADAPT: The Role of Integrated Fire Management on Climate Change Adaptation for Ecosystem Services in Tropical and Subtropical Regions
FIRE-ADAPT:综合火灾管理对热带和亚热带地区生态系统服务气候变化适应的作用
- 批准号:
EP/X041417/1 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Research Grant
CO-ADAPT: Adaptive management of endemic coinfections in ruminant livestock under climate change
CO-ADAPT:气候变化下反刍牲畜地方性混合感染的适应性管理
- 批准号:
BB/X017567/1 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Research Grant
How does the mammalian neocortex sense and adapt to metabolic state in health and disease?
哺乳动物新皮质如何感知和适应健康和疾病的代谢状态?
- 批准号:
MR/X00743X/1 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Fellowship
Biomimicry as an authentic anchor: Giving teachers the tools to adapt an interdisciplinary middle school curriculum
仿生学作为真正的锚点:为教师提供适应跨学科中学课程的工具
- 批准号:
2300433 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Continuing Grant
The ADAPT Trial: Adapting Evidence-Based Obesity Interventions in Community Settings
ADAPT 试验:在社区环境中采用循证肥胖干预措施
- 批准号:
10585810 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Illuminating T cells in their local microenvironments to understand how they sense and adapt to their trigger during infection
照亮局部微环境中的 T 细胞,了解它们在感染过程中如何感知和适应触发因素
- 批准号:
2886434 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Studentship
How should cultivation activities in school gardens adapt to climate change?
学校菜园的栽培活动应如何适应气候变化?
- 批准号:
23K02789 - 财政年份:2023
- 资助金额:
$ 29.91万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




