Collaborative Research: SHF: Small: Towards Variability-Aware Software Analysis and Testing

协作研究:SHF:小型:迈向可变性感知软件分析和测试

基本信息

  • 批准号:
    2211588
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Much of the software upon which society depends is highly configurable, with many optional and alternative features that can be turned on or off. Some combinations of options “play well” together. Other combinations of options may cause the software to crash or behave incorrectly and must be avoided. A wrong variety of features can be dangerous in safety-critical applications, such as in the health or aerospace domains. As software becomes more complex and offers more features, the risk of disconnects increases between those combinations that are disallowed per the requirements specifications and those constraints that are actually implemented in the code. The project will enable more effective analysis and testing of software product lines and configurable systems compared to the state-of-the-art. It will train students in the increasingly automated software analysis needed to verify complex, highly configurable software systems and product lines.This project aims to extend software analysis techniques to automatically extract feature constraints from the program’s code and check them against the feature constraints in the software requirements. The goal is to help automatically repair any inconsistencies and to derive tests that achieve high coverage of the variability constraints. The project will leverage variability-aware software analysis by adapting program analysis techniques such as symbolic execution and static analysis to be variability-aware at the intermediate-representation level. Variability constraints will be automatically extracted from software using variability-aware analysis. This will enable evaluating the impact of variability on the functional as well as non-functional properties. Additionally, extracted variability constraints will be used to check whether the software meets variability requirements and identify any required repairs. The project will apply and evaluate the proposed approach to real-world systems, paying particular attention to safety-critical constraints, and develop a set of challenge problems that reflect difficulties that developers face in practice for use by researchers and in coursework.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会所依赖的许多软件都是高度可配置的,具有许多可选和替代功能,可以打开或关闭。一些选项的组合在一起“玩得很好”。其他选项组合可能会导致软件崩溃或行为不正确,必须避免。在安全关键型应用中,例如在健康或航空航天领域中,错误的特征种类可能是危险的。随着软件变得越来越复杂并提供更多的功能,在需求规范不允许的那些组合和代码中实际实现的那些约束之间断开的风险增加。该项目将使软件产品线和可配置系统的更有效的分析和测试相比,国家的最先进的。它将培训学生在日益自动化的软件分析需要验证复杂的,高度可配置的软件系统和产品线。该项目旨在扩展软件分析技术,以自动从程序代码中提取功能约束,并根据功能约束检查它们在软件需求中。目标是帮助自动修复任何不一致性并推导出实现可变性约束高覆盖率的测试。该项目将通过调整程序分析技术(如符号执行和静态分析)来利用可变性感知的软件分析,以在中间表示层实现可变性感知。将使用可变性感知分析从软件中自动提取可变性约束。这将能够评估可变性对功能和非功能特性的影响。此外,提取的可变性约束将用于检查软件是否满足可变性要求并识别任何所需的修复。该项目将应用和评估所提出的方法,以现实世界的系统,特别注意安全关键的约束,并制定一套挑战性的问题,反映了开发人员在实践中面临的困难,供研究人员和课程使用。该奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tuba Yavuz其他文献

Detecting Callback Related Deep Vulnerabilities in Linux Device Drivers
Specification, verification, and synthesis using extended state machines with callbacks
使用带回调的扩展状态机进行规范、验证和综合
SIFT: A Tool for Property Directed Symbolic Execution of Multithreaded Software
DTjRTL: A Configurable Framework for Automated Hardware Trojan Insertion at RTL
DTjRTL:用于在 RTL 自动插入硬件木马的可配置框架
Tutorial: Detecting Memory Vulnerabilities in the Components of System Code using PROMPT
教程:使用 PROMPT 检测系统代码组件中的内存漏洞

Tuba Yavuz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tuba Yavuz', 18)}}的其他基金

CAREER: Towards a Secure and Reliable Internet of Things through Automated Model Extraction and Analysis
职业:通过自动模型提取和分析迈向安全可靠的物联网
  • 批准号:
    1942235
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: FMitF: Track I: Property-specific Hardware-oriented Formal Verification Modules for Embedded Systems
合作研究:FMitF:第一轨:嵌入式系统的面向属性的硬件形式验证模块
  • 批准号:
    2019283
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403408
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
  • 批准号:
    2423813
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403135
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Tiny Chiplets for Big AI: A Reconfigurable-On-Package System
合作研究:SHF:中:用于大人工智能的微型芯片:可重新配置的封装系统
  • 批准号:
    2403409
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了